79 resultados para classificação de imagens
Resumo:
A representação de funções através da utilização de bases (KERNEL) de representação tem sido fundamental no processamento digital de sinais. A Transformada KARHUNEN-LOÈVE (KLT), também conhecida como Transformada HOTELLING, permite a representação de funções utilizando funções-base formadas pelos autovetores da matriz de correlação do sinal considerado. Nesse aspecto essa transformada fornece uma base ótima, isto é, aquela que proporciona o menor valor de Erro Quadrático Médio entre o sinal reconstruído e o original, para um determinado número de coeficientes. A dificuldade na utilização da KLT está no tempo adicional para calcular os autovetores (base) da matriz de correlação, o que muitas vezes inviabiliza a sua utilização nas aplicações em tempo real. Em muitas aplicações a KLT é utilizada em conjunto com outras transformadas melhorando os resultados destas aplicações. Sendo considerada a transformada ótima no sentido do Erro Quadrático Médio, este trabalho apresenta um estudo da Transformada KARHUNEN-LOÈVE nas aplicações de compressão de imagens bidimensionais estáticas e em tons de cinza, realizando também a comparação desta técnica com outras técnicas (DCT e WAVELET) buscando avaliar os pontos fortes e fracos da utilização da KLT para este tipo de aplicação. Duas técnicas importantes para solucionar o problema de cálculo dos autovalores e autovetores da matriz de correlação (Método de JACOBI e Método QL) são também apresentadas neste trabalho. Os resultados são comparados utilizando a Razão Sinal/Ruído de Pico (PSNR), a Razão de Compressão (CR) e os tempos de processamento (em segundos) para geração dos arquivos compactados.
Resumo:
Com o aperfeiçoamento de técnicas de aquisição de imagens médicas, como, por exemplo, a tomografia computadorizada e ressonância magnética, a capacidade e a fidelidade do diagnóstico por imagens foram ampliadas. Atualmente, existe a tendência de utilizarem-se imagens através de diversas modalidades para um único diagnóstico, principalmente no caso de doenças graves. Entretanto, o registro e a fusão dessas imagens, chamadas mutimodais, em uma única representação 3D do paciente é uma arefa extremamente dif[icil, que consome tempo e que está sujeita a erros. Sendo assim, a integração de imagens de diferentes modalidades tem sido objeto de pesquisa sob a denominação de Visualização de Volumes de Dados Multimodais. Sistemas desenvolvidos com este objetivo são usados, principalmente, para combinar informações metabólicas e funcionais com dados de anatomia, aumentando a precisão do diagnóstico, uma vez que possibilitam extrrair uma superfície ou região da imagem que apresenta a anatomia, e, então, observar a atividade funcional na outra modalidade. Durante a análise de tais imagens, os médicos estão interessados e quantificar diferentes estruturas. Seusobjetivos envolvem, por exemplo, a visualização de artérias e órgãos do corpo humano para análise de patologias, tais como tumores, má-formações artério-venosas, ou lesões em relação às estuturas que as circundam. Assim, um dos principais obetivos de um algoritmo de visualização volumétrica é permitir a identificação e exploração de estruturas internas no volume. Como o volume é normalmente um "bloco de dados", não se pode visualizar o seu interior, a menos que se assuma que é possível ver através de voxels transparentes, ou que é possivel remover voxels que estão na frente na qual o usuário está interessado, o que foi feito através de técnicas de segmentação ou de corte. Este trabalho presenta uma abordagem para a visualização de estruturas internas em volumes de dados multimodais. A abordagem está fundamentada na utilização de ferramentas de corte, tanto geométricas quanto baseadas em conteúdo, evitando, assim, o uso de técnicas de segmentação; e na integração dos dados multimodais na etapa de acumulação de pipeline de visualização volumétrica. Considerando que as aplicações que suportam este tipo de visualização envolvem a integração de várias ferramentas, tais como registro, corte e visualização, também é apresentado o projeto de um framework que permite esta integração e um alto grau de interação com usuário. Para teste e validação das técnicas de visualização de estruturas internas propostas e do algoritmo desenvolvido, que consiste numa extensão do algoritmo de ray casting tradicional, foram implementadas algumas classes desse framework. Uma revisão baseada na análise e na classificação das ferramentas de corte e funções de transferências, que correspondem a técnicas que permitem visualizar estruturas internas, também é apresentada.
Resumo:
O processo de ensino e de aprendizagem funda-se numa relação escópica e especular estabelecida entre professor-aluno, da qual resultam a construção/consti-tuição de imagens. Estas, por sua vez, entendidas como processo e não como pro-duto, necessitam de três tempos para sua constituição, os quais são analisados a partir dos paradigmas da psicanálise freudo-lacaniana, da epistemologia genética e da filosofia benjaminiana. As imagens, na condição de suportes imaginários, representam, para o pro-fessor e para o aluno, um entre-lugar interdisciplinar enlaçando e fabricando se-melhanças e diferenças entre a Clínica e a Educação; entre o espaço privado da família e o espaço público da escola/social; entre o olhar e o ver; entre a imagem e sua representação. Trata-se, portanto, da construção de uma experiência e do exer-cício do ensinar e do aprender. Experiências essas, compartilhadas entre professor e aluno no espaço escolar Das análises e reflexões desenvolvidas nesta pesquisa, que tiveram por base tanto fragmentos de casos clínicos com crianças em atendimento psicomotor quanto entrevistas com professores, foi construído um instrumento denominado caso peda-gógico, cujo objetivo é auxiliar o professor a refletir sobre os efeitos imaginários pro-duzidos nas referidas relações escópicas e especulares, as quais interferem, susten-tam e, muitas vezes, obstaculizam o processo de ensino-aprendizagem, produzindo fracassos tanto no processo do ensinar, quanto no do aprender. Nesse sentido, é preciso compreender que o processo ensino-aprendizagem não implica apenas uma relação prazerosa, mas também e, especialmente, sofri-mentos: tanto do professor quanto do aluno, aos quais é preciso olhar e não apenas ver.
Resumo:
A proposta deste trabalho, consiste na elaboração de uma ferramenta computacional para a medição de campos de velocidades em escoamentos com baixas velocidades (< 0,5 m/s) utilizando o processamento digital de imagens. Ao longo dos anos, inúmeras técnicas foram desenvolvidas com este objetivo. Para cada tipo de aplicação, uma técnica se aplica com maior ou menor eficiência do que outras. Para o caso de estudos em fluídos transparentes, onde o escoamento pode ser visualizado, técnicas que utilizam processamento digital de imagens vêm ganhando um grande impulso tecnológico nos últimos anos. Este impulso, é devido a fatores como: câmaras vídeo filmadoras de última geração, dispositivos de aquisição de imagens e componentes de processamento e armazenamento de dados cada vez mais poderosos. Neste contexto, está a velocimetria por processamento de imagens de partículas cuja sigla é PIV (particle image velocimetry). Existem várias formas de se implementar um sistema do tipo PIV. As variantes dependem, basicamente, do equipamento utilizado. Para sua implementação é necessário, inicialmente, um sistema de iluminação que incide em partículas traçadoras adicionadas ao fluido em estudo. Após, as partículas em movimento são filmadas ou fotografadas e suas imagens adquiridas por um computador através de dispositivos de captura de imagens. As imagens das partículas são então processadas, para a obtenção dos vetores velocidade. Existem diferentes formas de processamento para a obtenção das velocidades. Para o trabalho em questão, devido às características dos equipamentos disponíveis, optou-se por uma metodologia de determinação da trajetória de partículas individuais, que, apesar de limitada em termos de módulo de velocidade, pode ser aplicada a muitos escoamentos reais sob condições controladas Para validar a ferramenta computacional desenvolvida, imagens ideais de partículas foram simuladas como se estivessem em escoamento, através do deslocamento conhecido de vários pixels. Seguindo o objetivo de validação, foi utilizada ainda uma imagem real de partículas, obtida com o auxílio de um plano de iluminação de luz coerente (LASER) e câmaras de vídeo tipo CCD. O programa desenvolvido foi aplicado em situações de escoamento real e os resultados obtidos foram satisfatórios dentro da escala de velocidades inicialmente presumida.
Resumo:
Esta dissertação propõe e discute um mecanismo de realimentação de relevâncias (i. e. “Relevance Feedback”). A técnica de realimentação de relevâncias foi introduzida inicialmente em meados dos anos 60, como uma estratégia para refinamento de consultas para a recuperação de informações. Como uma técnica de refinamento de consultas, foi aplicada inicialmente em sistemas de recuperação de informações textuais. Neste caso, os termos ou expressões consideradas importantes, são utilizados na formulação de uma nova consulta. Ao surgirem os sistemas de recuperação de informação visual baseada em conteúdo (CBVIR), houve a necessidade de serem introduzidos novos elementos associados a esse processo de reformulação de consultas, de tal forma que fossem utilizados não apenas as informações de alto nível, como os termos e expressões. Esses novos elementos passaram a considerar também a subjetividade de percepção humana em relação ao conteúdo visual. Neste trabalho, apresenta-se um processo de extração e representação desse conteúdo, através da utilização de feições (conteúdo) de cor e textura, extraídos de imagens JPEG, uma vez que no processo de compressão de imagens nesse formato, utiliza-se coeficientes da Transformada Discreta do Cosseno (DCT), sendo, portanto esses coeficientes utilizados como elementos que possuem as informações associadas a cor e textura na imagem. Além da DCTé utilizada a Transformação Mandala [YSH 83] no processo de agrupamento de somente 10 coeficientes, com o objetivo de produzir 10 imagens com resoluça menor que a imagem original, mas que representam cada uma, o conteúdo de uma frequência particular da imagem original. A escolha por uma representação como essa,é a garantia de uma redução significativa na quantidade de dados a serem processados. Entretanto, a representação obtida nesse formato para as imagens,é com base em conteúdo global de cor e textura, o que pode produzir resultados insatisfatórios. A introdução de um mecanismo de realimentação de relevâncias, associado à representação utilizada, permite contornar a dificuldade apontada acima, através da obtenção de consultas subsequentes, selecionando os objetos mais relevantes, assim como menos objetos não relevantes, utilizando o conhecimento do usuário de forma interativa no refinamento de consultas para recuperação de informações visuais.
Resumo:
A presente tese apresenta a concepção de uma rede neural oscilatória e sua realização em arquitetura maciçamente paralela, a qual é adequada à implementação de chips de visão digitais para segmentação de imagens. A rede proposta, em sua versão final, foi denominada ONNIS-GI (Oscillatory Neural Network for Image Segmentation with Global Inhibition) e foi inspirada em uma rede denominada LEGION (Locally Excitatory Globally Inhibitory Oscillator Network), também de concepção recente. Inicialmente, é apresentada uma introdução aos procedimentos de segmentação de imagens, cujo objetivo é o de situar e enfatizar a importância do tema abordado dentro de um contexto abrangente, o qual inclui aplicações de visão artificial em geral. Outro aspecto abordado diz respeito à utilização de redes neurais artificiais em segmentação de imagens, enfatizando as denominadas redes neurais oscilatórias, as quais têm apresentado resultados estimulantes nesta área. A implementação de chips de visão, integrando sensores de imagens e redes maciçamente paralelas de processadores, é também abordada no texto, ressaltando o objetivo prático da nova rede neural proposta. No estudo da rede LEGION, são apresentados resultados de aplicações originais desenvolvidas em segmentação de imagens, nos quais é verificada sua propriedade de separação temporal dos segmentos. A versão contínua da rede, um arranjo paralelo de neurônios baseados em equações diferenciais, apresenta elevada complexidade computacional para implementação em hardware digital e muitos parâmetros, com procedimento de ajuste pouco prático. Por outro lado, sua arquitetura maciçamente paralela apresenta-se particularmente adequada à implementação de chips de visão analógicos com capacidade de segmentação de imagens. Com base nos bons resultados obtidos nas aplicações desenvolvidas, é proposta uma nova rede neural, em duas versões, ONNIS e ONNIS-GI, as quais suplantam a rede LEGION em diversos aspectos relativos à implementação prática. A estrutura dos elementos de processamento das duas versões da rede, sua implementação em arquitetura maciçamente paralela e resultados de simulações e implementações em FPGA são apresentados, demonstrando a viabilidade da proposta. Como resultado final, conclui-se que a rede ONNIS-GI apresenta maior apelo de ordem prática, sendo uma abordagem inovadora e promissora na solução de problemas de segmentação de imagens, possuindo capacidade para separar temporalmente os segmentos encontrados e facilitando a posterior identificação dos mesmos. Sob o ponto de vista prático, a nova rede pode ser utilizada para implementar chips de visão digitais com arquitetura maciçamente paralela, explorando a velocidade de tais topologias e apresentando também flexibilidade para implementação de procedimentos de segmentação de imagens mais sofisticados.
Resumo:
Neste trabalho, nós estudamos propriedades básicas de aplicações monótonas por partes, utilizando a Teoria Kneading na obtenção de uma condição suficiente para a existência de conjugção topológica entre uma certa classe de aplicações padrão.
Resumo:
O presente trabalho descreve uma proposta para a representação geométrica de imagens. Através da subdivisão espacial adaptativa de uma imagem em triângulos, uma representação simplificada da estrutura da imagem pode ser obtida. Demonstramos que a representação gerada é adequada para aplicações como a segmentação e a compressão de imagens. O método de segmentação de imagens desenvolvido faz uso deste tipo de representação para obter resultados robustos e compactos, comparados a outros métodos existentes na literatura, e adequado para aplicações como a detecção, descrição e codificação de objetos. Utilizando uma representação geométrica semelhante a métodos de modelagem de superfícies, criamos um novo método de compressão de imagens que apresenta vantagens em relação a outros métodos existentes, em especial na compressão de imagens sem perdas.
Resumo:
Técnicas de visualização volumétrica direta propiciam a geração de imagens de alta qualidade já que se baseiam na amostragem do volume de dados original. Tal característica é particularmente importante na área da Medicina, onde imagens digitais de dados volumétricos devem ganhar maior importância como meio de apoio à tomada de decisão por parte dos médicos. No entanto, a geração de imagens com melhor qualidade possível acarreta um alto custo computacional, principalmente em relação ao algoritmo de ray casting, onde a qualidade de imagens depende de um maior número de amostras ao longo do raio fato este refletido no tempo de geração. Assim, a utilização de tais imagens em ambientes interativos é muitas vezes inviabilizada e, para a redução do custo computacional, é necessário abdicar parcialmente da qualidade da imagem. O conceito de qualidade é altamente subjetivo, e sua quantificação está fortemente relacionada à tarefa para qual a imagem está destinada. Na área da Medicina, imagem de boa qualidade é aquela que possibilita ao médico a análise dos dados através da sua representação visual, conduzindo-o a um diagnóstico ou prognóstico corretos. Nota-se que é necessário, então, avaliar a qualidade da imagem em relação a uma determinada tarefa a partir de critérios e métricas subjetivas ou objetivas. A maior parte das métricas objetivas existentes medem a qualidade de imagens com base no cálculo da diferença de intensidade dos pixels, fator que pode não ser suficiente para avaliar a qualidade de imagens do ponto de vista de observadores humanos. Métricas subjetivas fornecem informação mais qualificada a respeito da qualidade de imagens, porém são bastante custosas de serem obtidas. De modo a considerar tais aspectos, o presente trabalho propõe uma métrica objetiva que procura aproximar a percepção humana ao avaliar imagens digitais quanto à qualidade apresentada. Para tanto, emprega o operador gradiente de Sobel (enfatização de artefatos) e o reconhecimento de padrões para determinar perda de qualidade das imagens tal como apontado por observadores humanos. Os resultados obtidos, a partir da nova métrica, são comparados e discutidos em relação aos resultados providos por métricas objetivas existentes. De um modo geral, a métrica apresentada neste estudo procura fornecer uma informação mais qualificada do que métricas existentes para a medida de qualidade de imagens, em especial no contexto de visualização volumétrica direta. Este estudo deve ser considerado um passo inicial para a investigação de uma métrica objetiva mais robusta, modelada a partir de estudos subjetivos.
Resumo:
Neste trabalho foram realizadas classificações utilizando-se as bandas 1 a 5 e 7 dos sensores Landsat 5 TM (1987) e Landsat 7 ETM+ (2000). A caracterização espectral dos materiais foi realizada em laboratório utilizando um espectrorradiômetro, e através das bandas 1 a 5 e 7 dos sensores Landsat 5 TM (1987) e Landsat 7 ETM+ (2000). A transformação dos dados multiespectrais de imagens de sensoriamento remoto é uma maneira de reduzir o volume de dados através da identificação de classes de interesse numa imagem digital. No intuito de verificar condições de melhoramento na classificação de alvos urbanos em imagens digitais, identificados por procedimentos já conhecidos, como a classificação pela Máxima Verossimilhança, escolheu-se um classificador baseado na lógica fuzzy. O classificador utilizado foi o Fuzzy Set Membership classification - Fuzclass, que faz parte de um conjunto de classificadores não-rígidos disponíveis no programa Idrisi 32. Uma vez que informações sobre o desempenho de produtos deste classificador em áreas urbanas são escassas, foram conduzidos ensaios de comparação de resultados obtidos por este classificador com a verdade terrestre, representada por uma imagem de alta resolução espacial do satélite QuickBird. As áreas teste selecionadas desta imagem atendem ao critério de inalterância das condições de ocupação para o intervalo temporal considerado A comparação feita, permite concluir que o classificador apresenta limitações na classificação de áreas urbanas devido ao comportamento espectral semelhante dos materiais que fazem parte dessa cobertura. A utilização de uma classe única para identificar áreas impermeáveis foi a solução adotada para contornar este óbice. O emprego de áreas teste possibilitou acertar a escolha do grau de possibilidade de presença da classe no pixel (PPCP). Uma comparação entre os resultados apresentados na classificação de áreas impermeáveis, com base nos classificadores Máxima Verossimilhança e Fuzclass, demonstrou um desempenho melhor do classificador fuzzy, em função do nível de PPCP ajustado durante a análise comparativa Landsat e Quickbird nas áreas teste. Um procedimento alternativo de estimativa de áreas impermeáveis em bacias urbanas é apresentado no final.
Resumo:
A Astronomia, como origem e, talvez, como fim de todas as Ciências, sempre esteve voltada à observação dos astros e à busca de novas técnicas e instrumentos que permitissem ampliar os limites e a qualidade destas observações. Dessa busca resultou o desenvolvimento do telescópio óptico, em 1608, por Galileu Galilei. Com o passar dos anos, esse instrumento foi sofrendo incontáveis aperfeiçoamentos, chegando aos nossos dias como um aparelho preciso e de sofisticada tecnologia. Apesar das fronteiras observacionais terem avançado para além do espectro visível, o telescópio óptico ainda é indispensável à Astronomia. O Brasil, embora não apresente condições meteorológicas ideais para observações astronômicas, possui observatórios ópticos de razoável qualidade, como o Laboratório Nacional de Astrofísica, LNA, em Minas Gerais, entre outros. Em seu extremo sul, no entanto, o País carece de bons instrumentos ópticos, destacando-se unicamente o telescópio da UFRGS instalado no Observatório do Morro Santana, em Porto Alegre. O aumento da iluminação artificial na Região Metropolitana de Porto Alegre e, conseqüentemente, da claridade do céu noturno tem praticamente inviabilizado a operação do Observatório. Assim, a escolha de novos locais para a futura instalação de telescópios ópticos no Estado é imprescindível. Acrescenta-se a isto o fato do ciclo climático desta região diferenciarse daquele das demais regiões do País, fato relevante, dado que um dos fatores determinantes na escolha de novos sítios para telescópios ópticos é a taxa de nebulosidade. Levantamentos in situ de nebulosidade são longos e custosos. Como alternativa, neste trabalho foi realizado um estudo estatístico do Estado, a partir da montagem de um banco de 472 imagens noturnas dos satélites GOES e MeteoSat. A combinação das imagens, por processo de superposição e cálculo de valores médios de contagens (brilho), à escala de pixel, forneceu informações em nível de préseleção, ou indicativo, de locais com altas taxas de noites claras. Foram cobertos os períodos de 1994-1995 e 1998-1999, com focalização nas áreas em torno de Bom Jesus, Vacaria e Caçapava do Sul. Como controle, foi também monitorada a área em torno do LNA em Minas Gerais. Ademais da demonstração metodológica, os dados orbitais indicaram que, na média destes anos, estas áreas são adequadas à instalação de observatórios astronômicos, pela conjugação dos fatores de nebulosidade e altitude.
Resumo:
Neste trabalho será feita uma análise da quantidade de pontos de controle para correção geométrica de imagens, mais especificamente, do satélite CBERS-I, utilizando o sensor CCD, através de análises estatísticas para o cálculo da quantidade de pontos e estudo quantitativo através da análise de variância da média dos resíduos obtidos de amostras de tamanhos variados. Os pontos de controle foram coletados com receptor GPS e foi utilizado um modelo polinomial de segunda ordem para a correção geométrica da imagem. Os resultados experimentais obtidos na análise da média para o cálculo da quantidade de pontos mostram que o erro residual tende a se estabilizar para a quantidade de pontos definidos pela estatística. Apresenta-se ao final, considerações iniciais sobre a aplicação desta proposta para diversos outros sensores, permitindo um maior aproveitamento destes na atualização cartográfica e na geração de cartas imagens.
Resumo:
Esta dissertação, História do Povo Surdo em Porto Alegre, Imagens e Sinais de uma Trajetória Cultural traz a narrativa, através de fotografias, da evolução das políticas surdas em Porto Alegre. O Referencial teórico utilizado para embasar as narrativas em seus contextos históricos e culturais foi o dos Estudos Surdos, Estudos Culturais e Análise de Fotografias. A documentação destes eventos importantes para o povo surdo local possibilitou o registro do desenvolvimento e das articulações feitas pelas pessoas surdas em busca de seu reconhecimento como grupo cultural e não como sujeitos deficitários, desde a década de 1950 até os dias atuais. As histórias registradas nas fotografias, narradas por seus protagonistas, mostram a construção do Povo Surdo, passo a passo, historicamente.
Resumo:
A RPPN SESC-Pantanal, em Barão de Melgaço, MT, apresenta características em grande parte associadas à fisionomia do cerrado, com áreas mais secas em relação às regiões localizadas mais ao sul e a oeste do Pantanal. O mapa de cobertura do solo, produzido através de classificação não-supervisionada de imagens de satélite, identificou 18 classes de cobertura e nove domínios fisionômicos, que correspondem a uma representação sintética da distribuição das unidades da paisagem na Reserva. O desenvolvimento apropriado de estratégias de manejo e de conservação fundamenta-se principalmente no conhecimento da fauna regional, ressaltado pela sua abundância e formas de uso da área. A anta, Tapirus terrestris, e o cervo-do-pantanal, Blastocerus dichotomus, são elementos bastante comuns na paisagem da RPPN. A estimativa do tamanho da população de antas na região de estudo foi de 581 indivíduos; a densidade (0,71 ind./km2), no conjunto das fisionomias florestais da região, foi 92% mais elevada do que para as formações campestres (0,37 ind./km2). O tamanho populacional estimado para o cervo-do-pantanal foi de 135 indivíduos (0,44 ind./km2) para o período seco, e 157 indivíduos (0,73 ind./km2) para o período úmido. Com base nos modelos de distribuição gerados, nos resultados obtidos via o Índice de Seleção e nas estimativas de densidade, pode-se inferir sobre a qualidade dos hábitats para as espécies. As Matas com Acuri (Scheelea phalerata) são de elevada importância para T. terrestris, embora a espécie tenha ampla distribuição na Reserva. B. dichotomus tem sua maior população no Pantanal e, na Reserva, está em condição peculiar em relação à descrita como característica para a espécie: ocupa hábitats mais secos do que na maior parte de sua área de ocorrência Os hábitats campestres, relacionados à presença de murundus, foram selecionados positivamente pela espécie. A análise espacial em diferentes escalas foi fundamental para evidenciar a importância de corpos d’água (tanques ou baías) na previsão da ocorrência da espécie: as zonas de maior probabilidade dispõem-se na forma de núcleos centrados na rede de tanques, na área central da Reserva e nas adjacências de baías na porção leste da UC. As análises demonstraram uma hierarquia no uso dos hábitats, tanto para T. terrestris quanto para B. dichotomus, permitindo identificar zonas onde as chances são maiores de ocorrência das espécies, uma expressão de conjuntos de fatores que devem se aproximar do ótimo para as espécies no contexto da paisagem estudada.