68 resultados para Inteligência Artificial Distribuída


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A popularização da Internet e o crescimento da educação à distância tornaram possível a criação de softwares e cursos à distância, disponíveis na WWW. Atualmente, a Inteligência Artificial (IA) vem sendo utilizada para aumentar a capacidade de ambientes de educação à distância, diminuindo a desistência pela falta de estímulos externos e de interação entre colegas e professores. Este trabalho encontra-se inserido no ambiente colaborativo suportado por computador, definido no projeto “Uma Proposta de Modelo Computacional de Aprendizagem à Distância Baseada na Concepção Sócio-Interacionista de Vygotsky” chamado MACES (Multiagent Architecture for an Collaborative Educational System). Sua principal proposta, como parte do projeto do grupo, é desenvolver e implementar a interface animada do personagem para os agentes pedagógicos animados Colaborativo e Mediador que operam no ambiente de aprendizado colaborativo proposto pelo grupo. O personagem desenvolvido chama-se PAT (Pedagogical and Affective Tutor). A interface do personagem foi desenvolvida em Java, JavaScript e usa o Microsoft Agent para a movimentação. O Resin 2.1.6 (semelhante ao Tomcat que também foi usado de teste) é o compilador de servlet usado na execução de Java Servlet’s e tecnologias jsp – que monta páginas HTML dinamicamente. Esta montagem é feita no servidor e enviada para o browser do usuário. Para definir a aparência do personagem foram feitas entrevistas com pedagogas, psicólogas, psicopedagogas e idéias tiradas de entrevistas informais com profissionais que trabalham com desenho industrial, propaganda, cartoon e desenho animado. A PAT faz parte da interface do MACES e promove a comunicação entre esse ambiente e o usuário. Portanto, acredita-se que a PAT e os recursos da Inteligência artificial poderão aumentar a capacidade de ambientes de educação à distância, tornando-os mais agradáveis, assim como diminuir a desistência pela falta de estímulos externos e de interação com colegas e professores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho investiga a relação entre aprendizado e dinâmica em sistemas complexos multiagentes. Fazemos isso através de estudos experimentais em um cenário de racionalidade limitada que situa-se na interesecção entre Inteligência Artificial, Economia e Física Estatística, conhecido como “Minority Game”. Apresentamos resultados experimentais sobre o jogo focando o estudo do cenário sob uma perspectiva de Aprendizado de Máquina. Introduzimos um novo algoritmo de aprendizado para os agentes no jogo, que chamamos de aprendizado criativo, e mostramos que este algoritmo induz uma distribuição mais eficiente de recursos entre os agentes. Este aumento de eficiência mostra-se resultante de uma busca irrestrita no espaço de estratégias que permitem uma maximização mais eficiente das distâncias entre estratégias. Analisamos então os efeitos dos parâmetros deste algoritmo no desempenho de um agente, comparando os resultados com o algoritmo tradicional de aprendizado e mostramos que o algoritmo proposto é mais eficiente que o tradicional na maioria das situações. Finalmente, investigamos como o tamanho de memória afeta o desempenho de agentes utilizando ambos algoritmos e concluímos que agentes individuais com tamanhos de memória maiores apenas obtém um aumento no desempenho se o sistema se encontrar em uma região ineficiente, enquanto que nas demais fases tais aumentos são irrelevantes - e mesmo danosos - à performance desses agentes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O gerenciamento de redes exige dos administradores a disponibilidade de uma grande quantidade de informações sobre os seus equipamentos, as tecnologias envolvidas e os problemas associados a elas. Nesse cenário, administradores de redes devem, cada vez mais, aprofundar o seu conhecimento através de constante treinamento, até que estejam aptos a administrar uma rede de maneira mais eficiente e confiável. Alguns estudos têm sido feitos buscando integrar tecnologias de Inteligência Artificial na área de gerenciamento de redes. Abordagens utilizando sistemas multiagentes, agentes de interface e sistemas especialistas já foram utilizadas com o objetivo de facilitar a tarefa de gerenciamento de rede aos olhos do usuário. Os chatterbots representam um grande potencial para a tarefa de treinamento e gerenciamento de redes já que utilizam linguagem natural e são capazes de ser facilmente integrados em ambientes mais complexos. O principal objetivo deste trabalho é investigar o uso de chatterbots como uma ferramenta de gerenciamento utilizada por administradores menos treinados. O trabalho envolveu a adaptação do chatterbot ALICE para permitir o treinamento e a gerência de redes através da inclusão de módulos que permitem a monitoração de equipamentos de uma rede (através do protocolo SNMP) e módulos que permitam consultar e armazenar histórico de informações da mesma. Desta forma, a grande contribuição da arquitetura proposta é a de prover uma comunicação mais efetiva entre o administrador menos experiente e a rede, através do chatterbot assistente, que recebe consultas em linguagem natural, interpreta os dados coletados e expõe os conceitos envolvidos no processo de gerenciamento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho analisa diferentes modelos de representação temporal usados em arquiteturas conexionistas e propõe o uso de um novo modelo neural, chamado Neurônio Diferenciador-Integrador (NDI) para aplicação com processamento de sinais temporais. O NDI pode ser interpretado como filtro digital. Seu funcionamento exige poucos recursos computacionais e pode ser de grande valia em problemas onde a solução ideal depende de uma representação temporal instantânea, facilidade de implementação, modularidade e eliminação de ruído. Após a definição do modelo, o mesmo é sujeito a alguns experimentos teóricos utilizado em conjunto com arquiteturas conexionistas clássicas para resolver problemas que envolvem o tempo, como previsão de séries temporais, controle dinâmico e segmentação de seqüências espaço-temporais. Como conclusão, o modelo neural apresenta grande potencialidade principalmente na robótica, onde é necessário tratar os sinais sensoriais ruidosos do robô de forma rápida e econômica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Inteligência Artificial é uma área da computação onde se está constantemente desenvolvendo pesquisas em software educacionais, principalmente os Sistemas Tutores Inteligentes (STI). Esses sistemas têm a capacidade de se adaptarem às particularidades de cada aluno, proporcionando assim, ambientes que facilitam a aprendizagem do usuário. Recentemente foi incorporada a tecnologia de agentes na modelagem do STI e nos ambientes educacionais na Internet. Estes agentes são denominados pedagógicos quando estão ligados a um ambiente onde existe uma sociedade de agentes que compõem um sistema de ensino-aprendizagem. Este texto apresenta um modelo de adaptação para ambientes genéricos de ensino, composto por agentes pedagógicos. A proposta é baseada em estudos relacionados com sistemas hipermídia adaptativos, sistemas tutores inteligentes, sistemas multiagentes e agentes pedagógicos. Inicialmente, o texto descreve o modelo. Logo após, é apresentada a implementação dos agentes os quais tem como tarefa prover a adaptação do ensino, sendo responsáveis em fornecer o caminho mais efetivo para a aprendizagem do aluno. Os agentes do modelo são denominados Agente Tutor, Agente Perfil e Agente de Comunicação. A realização da adaptação da instrução às características individuais do aprendiz implica o sistema conhecer: os padrões cognitivos de aprendizagem do aluno, traduzidos como estilos de aprendizagem e as suas implicações pedagógicas; e a modelagem das características do aprendiz: nível de conhecimento, metas, experiência e preferências do aprendiz. Finalmente, o texto descreve um estudo de caso, onde o modelo proposto foi integrado num ambiente de aprendizagem, e validado numa disciplina virtual a fim de avaliação de seus objetivos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes an animated pedagogical agent that has the role of providing emotional support to the student: motivating and encouraging him, making him believe in his self-ability, and promoting a positive mood in him, which fosters learning. This careful support of the agent, its affective tactics, is expressed through emotional behaviour and encouragement messages of the lifelike character. Due to human social tendency of anthropomorphising software, we believe that a software agent can accomplish this affective role. In order to choose the adequate affective tactics, the agent should also know the student’s emotions. The proposed agent recognises the student’s emotions: joy/distress, satisfaction/disappointment, anger/gratitude, and shame, from the student’s observable behaviour, i. e. his actions in the interface of the educational system. The inference of emotions is psychologically grounded on the cognitive theory of emotions. More specifically, we use the OCC model which is based on the cognitive approach of emotion and can be computationally implemented. Due to the dynamic nature of the student’s affective information, we adopted a BDI approach to implement the affective user model and the affective diagnosis. Besides, in our work we profit from the reasoning capacity of the BDI approach in order for the agent to deduce the student’s appraisal, which allows it to infer the student’s emotions. As a case study, the proposed agent is implemented as the Mediating Agent of MACES: an educational collaborative environment modelled as a multi-agent system and pedagogically based on the sociocultural theory of Vygotsky.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durante os últimos anos as áreas de pesquisa sobre Agentes Inteligentes, Sistemas Multiagentes e Comunicação entre Agentes têm contribuído com uma revolução na forma como sistemas inteligentes podem ser concebidos, fundamentados e construídos. Sendo assim, parece razoável supor que sistemas inteligentes que trabalhem com domínios probabilísticos de conhecimento possam compartilhar do mesmo tipo de benefícios que os sistemas mais tradicionais da Inteligência Artificial receberam quando adotaram as concepções de agência, de sistemas compostos de múltiplos agentes e de linguagens de comunicação entre estes agentes. Porém, existem dúvidas não só sobre como se poderia escalar efetivamente um sistema probabilístico para uma arquitetura multiagente, mas como se poderia lidar com as questões relativas à comunicação e à representação de conhecimentos probabilísticos neste tipo de sistema, principalmente tendo em vista as limitações das linguagens de comunicação entre agentes atuais, que não permitem comunicar ou representar este tipo de conhecimento. Este trabalho parte destas considerações e propõe uma generalização do modelo teórico puramente lógico que atualmente fundamenta a comunicação nos sistemas multiagentes, que será capaz de representar conhecimentos probabilísticos. Também é proposta neste trabalho uma extensão das linguagens de comunicação atuais, que será capaz de suportar as necessidades de comunicação de conhecimentos de natureza probabilísticas. São demonstradas as propriedades de compatibilidade do novo modelo lógico-probabilístico com o modelo puramente lógico atual, sendo demonstrado que teoremas válidos no modelo atual continuam válidos no novo modelo. O novo modelo é definido como uma lógica probabilística que estende a lógica modal dos modelos atuais. Para esta lógica probabilística é definido um sistema axiomático e são demonstradas sua correção e completude. A completude é demonstrada de forma relativa: se o sistema axiomático da lógica modal original for completo, então o sistema axiomático da lógica probabilística proposta como extensão também será completo. A linguagem de comunicação proposta neste trabalho é definida formalmente pela generalização das teorias axiomáticas de agência e comunicação atuais para lidar com a comunicação de conhecimentos probabilísticos e pela definição de novos atos comunicativos específicos para este tipo de comunicação. Demonstra-se que esta linguagem é compatível com as linguagens atuais no caso não-probabilístico. Também é definida uma nova linguagem para representação de conteúdos de atos de comunicação, baseada na lógica probabilística usada como modelo semântico, que será capaz de expressar conhecimentos probabilísticos e não probabilísticos de uma maneira uniforme. O grau de expressibilidade destas linguagens é verificado por meio de duas aplicações. Na primeira aplicação demonstra-se como a nova linguagem de conteúdos pode ser utilizada para representar conhecimentos probabilísticos expressos através da forma de representação de conhecimentos probabilísticos mais aceita atualmente, que são as Redes Bayesianas ou Redes de Crenças Probabilísticas. Na outra aplicação, são propostos protocolos de interação, baseados nos novos atos comunicativos, que são capazes de atender as necessidades de comunicação das operações de consistência de Redes Bayesianas secionadas (MSBNs, Multiple Sectioned Bayesian Networks) para o caso de sistemas multiagentes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O mundo moderno vem exigindo cada vez mais das pessoas no aspecto profissional. A exigência de capacitação profissional é uma realidade que obriga as pessoas a uma constante atualização. Neste contexto, a educação a distancia se mostra uma importante via de disseminação de conhecimento. Este trabalho apresenta um agente de Perfil do Usuário inserido no contexto do projeto PortEdu – Portal de Educação, projeto que visa abrigar ambientes de ensino na Web. Um dos objetivos do projeto PortEdu é fornecer um serviço de recuperação de informação aos ambientes ancorados, guiado pelo Agente Perfil do Usuário, tendo como finalidade oferecer informações contextualizadas a um problema específico do usuário (aluno), com a intenção de auxiliá-lo em seu aprendizado. Durante a utilização de ambientes de educação a distância, os alunos utilizam ferramentas de recuperação de informação na busca de soluções para as suas dúvidas. Mas, a busca de informação na Internet, utilizando as ferramentas existentes, nem sempre é uma tarefa simples, pois exige esforço na construção de termos de busca eficientes ou mantém o usuário percorrendo longas listas de resultados. No desenvolvimento deste serviço, no PortEdu, procuramos minimizar este tipo de esforço. Neste trabalho são descritas, primeiramente, as áreas envolvidas na pesquisa, mostrando como elas foram utilizadas na construção do Agente de Perfil do Usuário. Também é realizada uma descrição da área de inteligência artificial, dos conceitos de agente e Educação a Distancia. Pretende-se mostrar aqui as propriedades que o Agente de Perfil do Usuário possui Na seqüência, são apresentadas as soluções tecnológicas utilizadas no projeto, tais como: AMPLIA (ambiente de ensino ancorado no PortEdu), PMA3, FIPA e a API Fácil. É descrito o modo como estas tecnologias interagem no âmbito do PortEdu. O problema da recuperação de informação na Web é discutido nesta pesquisa e são apresentados três trabalhos relacionados que abordam este problema. Também é realizada uma comparação entre estes trabalhos e o PortEdu. Por fim, este trabalho apresenta uma solução encontrada para resolver o problema de recuperação de informação na Web utilizando um protótipo do PortEdu. Esta pesquisa está inserida na área de Informática na Educação.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho pretende avaliar se é possível elaborar estratégias pedagógicas com base em modelos de níveis de tomada de consciência e utilizá-las, por meio de agentes inteligentes, em um ambiente de aprendizagem. O ambiente utilizado foi o AMPLIA - Ambiente Multi-agente Probabilístico Inteligente de Aprendizagem, desenvolvido inicialmente como um recurso auxiliar para a educação médica: neste ambiente, o aluno constrói uma representação gráfica de sua hipótese diagnóstica, por meio de uma rede bayesiana. O AMPLIA é formado por três agentes inteligentes, o primeiro é o Agente de Domínio, responsável pela avaliação da rede bayesiana do aluno. Os projetos dos outros dois agentes inteligentes do AMPLIA são apresentados nesta tese: o Agente Aprendiz, que faz inferências probabilísticas sobre as ações do aluno, a fim de construir um modelo do aluno baseado em seu nível de tomada de consciência, e o Agente Mediador, que utiliza um Diagrama de influência, para selecionar a estratégia pedagógica com maior probabilidade de utilidade. Por meio de uma revisão dos estudos de Piaget sobre a equilibração das estruturas cognitivas e sobre a tomada de consciência, foi construída a base teórica para a definição e organização das estratégias. Essas foram organizadas em classes, de acordo com o principal problema detectado na rede do aluno e com a confiança declarada pelo aluno, e em táticas, de acordo com o nível de autonomia, inferido pelo Agente Aprendiz. Foram realizados experimentos práticos acompanhados por instrumentos de avaliação e por observações virtuais on line, com o objetivo de detectar variações nos estados de confiança, de autonomia e de competência. Também foram pesquisados indícios de estados de desequilibração e de condutas de regulação e equilibração durante os ciclos de interação do aluno com o AMPLIA. Os resultados obtidos permitiram concluir que há evidências de que, ao longo do processo, há ciclos em que o aluno realiza ações sem uma tomada de consciência. Estes estados são identificados, probabilisticamente, pelo agente inteligente, que então seleciona uma estratégia mais voltada para um feedback negativo, isto é, uma correção. Quando o agente infere uma mudança neste estado, seleciona outra estratégia, com um feedback positivo e com maior utilidade para dar início a um processo de negociação pedagógica, isto é, uma tentativa de maximizar a confiança do aluno em si mesmo e no AMPLIA, assim como maximizar a confiança do AMPLIA no aluno. Os trabalhos futuros apontam para a ampliação do modelo do aluno, por meio da incorporação de um maior número de variáveis, e para a necessidade de aprofundamento dos estudos sobre a declaração de confiança, do ponto de vista psicológico. As principais contribuições relatadas são na definição e construção de um modelo de aluno, com utilização de redes bayesianas, no projeto de um agente pedagógico como mediador num processo de negociação pedagógica, e na definição e seleção de estratégias pedagógicas para o AMPLIA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A procura por uma forma de, fácil e rapidamente, retirar conhecimento de um especialista e transmiti-lo a outros profissionais tem levado ao desenvolvimento de diversas pesquisas que unem metodologias de raciocínio com o atendimento a problemas. Os ambientes corporativos demonstram sua eficiência baseados na maneira como desenvolvem suas tarefas. Cada vez mais, buscam alternativas que os ajudem a responder por atividades e problemas ocorridos, as quais podem significar um processo de manutenção que pode decidir o nível de eficiência e competência da organização. Estas alternativas compreendem ferramentas ou profissionais, os quais transformaram-se em especialistas por adquirirem conhecimento e capacidade em prover soluções a problemas. As características de um problema podem ser alteradas sob alguns aspectos mas, mesmo em domínios mais complexos como a gerência de redes de computadores ou a medicina, algo que foi aprendido sempre tem utilidade em novas situações. Este é o tipo de conhecimento e raciocínio próprios de um especialista, ou seja, o uso de suas experiências. Raciocínio Baseado em Casos (case-based reasoning) é uma metodologia de inteligência artificial que apresenta a forma de raciocínio semelhante à de um especialista, onde o raciocínio é obtido por um processo de recordar um exemplo concreto. Porém, as pesquisas que a utilizam, geralmente, desenvolvem trabalhos para um específico tipo de domínio de problema, o que resulta em alterações de programação, caso estes desejem ser adaptados para outros domínios. Este procedimento, muitas vezes, é tido como difícil e trabalhoso Baseando-se neste contexto, o presente trabalho apresenta um mecanismo que fornece inclusões de conhecimento de especialistas, independente do tipo de domínio de problema, e raciocínio sobre este conhecimento, de forma a auxiliar usuários com problemas referentes ao domínio cadastrado. Para tanto, a implementação baseou-se na união de sistemas de registros de problemas (trouble ticket systems) com raciocínio baseado em casos, propondo uma forma auxiliar no conhecimento e busca de soluções em domínios de problema. O estudo, além de fazer uso das metodologias citadas acima, usa o domínio de gerenciamento de segurança em redes de computadores para exercitar suas funções, provar sua utilidade e dificuldades. Assim, um estudo mais detalhado sobre os problemas que cercam o domínio de segurança em redes TCP/IP foi desenvolvido.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diferentes correntes da psicopedagogia apontam que a negociação é fundamental em interações de ensino-aprendizagem. No entanto, pouca pesquisa tem sido baseada em uma noção precisa do que é negociação e de como esta se relaciona com a aprendizagem. Este trabalho descreve um modelo para negociação pedagógica, aplicado a um ambiente multiagente de aprendizagem. Após discussão de exemplos ilustrativos e revisão bibliográfica de áreas de pesquisa relacionadas, a negociação é definida utilizando quatro características: o que está sendo negociado, os estados iniciais e finais de negociação e o processo de negociação em si. A tese concentra-se nos processos de negociação, para que um modelo seja desenvolvido baseado na interação argumentativa entre o sistema e o aluno, a partir da construção de redes bayesianas. É proposto que a atitude proposicional mais relevante para interações de negociação pedagógica está relacionada a um processo de equalização mútua de graus de confiança entre o professor e o aluno. Como conclusão, são apresentados os resultados alcançados, resumidos na implementação do Ambiente Multiagente ProbabiLístico Inteligente de Aprendizagem – AMPLIA. Os primeiros resultados da implementação do ambiente e o modelo geral da negociação pedagógica implantada puderam ser vistos durante um curso piloto realizado no Hospital de Clínicas de Porto Alegre.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta pesquisa propõe uma abordagem na qual objetos de aprendizagem são construídos com base no paradigma de agentes. A fundamentação tecnológica desta abordagem é constituída por uma integração entre tecnologias desenvolvidas para Objetos de Aprendizagem e para Sistemas Multiagentes. O conceito central apresentado é o de Objeto Inteligente de Aprendizagem, entidade que corresponde a um agente que é capaz de gerar experiências de aprendizagem reutilizáveis, no mesmo sentido que os objetos de aprendizagem. É apresentada uma sociedade multiagente concebida com a finalidade de dar suporte a abordagem proposta, bem como a modelagem do processo de comunicação entre os agentes desta sociedade. Como forma de validar as propostas feitas, são apresentados uma arquitetura de agentes que implementa os conceitos definidos e um conjunto de recursos para a construção de agentes compatíveis com esta arquitetura. Através destes recursos é possível a implementação das entidades propostas neste trabalho.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho visa apresentar uma metodologia para modelagem de motoristas a serem utilizados em simulações de tráfego veicular discreto. Além da metodologia, será apresentada uma plataforma para implementação de motoristas, chamada DRIVER-DFW, baseada neste conceito. Inicialmente, serão apresentados alguns modelos de movimentação de veículos baseados no modelo de autômato celular Nagel–Schreckenberg. O modelo básico será apresentado juntamente com alguns de seus aperfeiçoamentos, que são os modelos utilizados no simulador ITSUMO, que por sua vez é utilizado como base para o trabalho. Além dos modelos de autômato celular, serão apresentados modelos de planejamento de rota, que se utilizam de várias heurísticas para a tomada de decisão dos motoristas. Destes, selecionou-se um para implementação e demonstração. Mostradas as etapas para composição do modelo completo de motorista, isto é, movimentação e planejamento, será apresentada a plataforma para implementação de motoristas desenvolvida neste trabalho. Esta separação é a base da plataforma DRIVER-DFW que é discutida com mais detalhes para auxiliar a compreensão do seu funcionamento. Além disso, é mostrado como a metodologia é aplicada na plataforma para implementação de motoristas DRIVER-DFW. Por fim, conclui-se que este trabalho apresenta uma alternativa bastante atraente para a implementação de modelos de motoristas, com uma metodologia e uma plataforma de desenvolvimento. Também são apresentadas as diretrizes para dar prosseguimento a este.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lógicas modais têm sido amplamente utilizadas em Ciência da Computação e inteligência artificial. Além disso, aplicações de lógicas modais na representação do conhecimento em sistemas distribuídos e, mais recentemente, em sistemas multiagentes, têm apresentado resultados promissores. No entanto, outros sistemas de prova para estas lógicas que não os sistemas axiomáticos à la Hilbert são raros na literatura. Este trabalho tem como objetivo principal preencher esta lacuna existente na literatura, ao propor um sistema de prova por dedução natural rotulada para lógicas do conhecimento.