48 resultados para Equações não lineares
Resumo:
Os registros de vazões líquidas obtidos das estações fluviométricas são válidos, unicamente, para o local de onde foram coletados ou muito próximo a ele. Na maioria das vezes, a região de influência deste não inclui o local de interesse para o desenvolvimento de projetos de recursos hídricos. Este inconveniente, geralmente, pode ser resolvido através do uso de métodos de regionalização hidrológica. Para determinar os coeficientes da equação de regionalização, o procedimento mais usado consiste em: i) estabelecer uma relação do tipo exponencial multivariada entre a variável dependente (vazão média de longo prazo ou média anual de cheia) e as covariáveis (variáveis climáticas e fisiográficas da bacia hidrográfica); ii) linearizar a equação anterior mediante a transformação logarítmica de ambos os membros; iii) utilizar modelos lineares de regressão para estimar os coeficientes, geralmente, o método dos mínimos quadrados ordinários; e iv) aplicar a transformação inversa para definir a equação. A aplicação deste procedimento implica assumir certas propriedades dos dados (assimetria positiva, registros da mesma extensão e que os mesmos possuem o mesmo período de início e fim, entre outros) que dificilmente podem ser atendidas, prejudicando a verificação das hipóteses nas quais estão baseados os métodos lineares de regressão e, em conseqüência, seu adequado uso, bem como a confiabilidade dos resultados obtidos. Esta pesquisa apresenta um aprimoramento dos métodos de regionalização de vazões geralmente empregados, incluindo-se técnicas que levam em consideração as limitações anteriores. Estas técnicas foram: i) uso da transformada de Box-Cox na linearização da equação exponencial multivariada; ii) determinação dos coeficientes da equação de regionalização usando mínimos quadrados ponderados; e iii) verificação se os resíduos da regressão estão correlacionados ou não. Para o desenvolvimento e verificação da metodologia proposta foram usados somente registros fluviométricos de Bacias Hidrográficas Brasileiras, que drenam suas águas para o Rio Grande do Sul e/ou que estejam localizadas dentro dele. Geograficamente, a área de estudo inclui a totalidade do estado do Rio Grande do Sul e parte de Santa Catarina. As equações de regionalização foram definidas usando dados de vazões médias de longo prazo e média de cheia, para tempo de retorno de 2,33 e 50 anos. Neste último caso, as freqüências foram estimadas através do método dos momentos-L.Comparando os resultados obtidos utilizando o modelo de regionalização hidrológica proposto neste trabalho (transformada de Box-Cox / mínimos quadrados ponderados) junto a seus similares gerados usando a metodologia convencional (transformada logarítmica / mínimos quadrados ordinários) e de modelos intermediários (transformada logarítmica / mínimos quadrados ponderados e transformada de Box-Cox / mínimos quadrados ordinários), os mesmos podem ser considerados satisfatórios, visto que em todas as simulações realizadas o modelo proposto forneceu melhores resultados que aqueles obtidos com os outros modelos, sendo utilizado como padrão de comparação: 1) a qualidade do ajuste, 2) o grau de verificação das hipóteses dos métodos lineares de regressão e 3) os erros na estimativa das descargas, em termos de vazão específica. Nas simulações realizadas usando os modelos intermediários, observou-se que: i) na regionalização de vazões médias, o ganho de considerar a heterogeneidade temporal dos dados é maior do que corrigir a assimetria dos mesmos; ii) quando são usadas séries de descargas máximas, ocorre o efeito contrário, visto que o ganho de corrigir a assimetria das séries é maior do que o efeito da heterogeneidade temporal dos dados. Com relação aos resíduos da regressão, contrariamente ao esperado, os mesmos não sugerem estar correlacionados; isto pode ser conseqüência de utilizar como variável dependente um único registro por estação (vazão média de longo prazo ou média anual de cheia).
Resumo:
O método LTSN tem sido utilizado na resolução de uma classe abrangente de problemas de transporte de partículas neutras que são reduzidos a um sistema linear algébrico depois da aplicação da transformada de Laplace. Na maioria dos casos estudados os autovalores associados são reais e simétricos. Para o problema de criticalidade os autovalores associados são reais ou imaginários puros e simétricos, e para o o problema de multigrupo podem aparecer autovalores complexos. O objetivo deste trabalho consiste na generalização da formulação LTSN para problemas de transporte com autovalores complexos. Por esse motivo é focada a solução de um problema radiativo de transporte com polarização em uma placa plana. A solução apresentada fundamenta-se na aplicação da transformada de Laplace ao conjunto de equações SN dos problemas resultantes da decomposição da equação de transferência radiativa com polarização em série de Fourier, seguindo o procedimento de Chandrasekhar. Esse procedimento gera 2L + 2 sistemas lineares de ordem 4N dependentes do parâmetro complexo "s". Aqui, L é o grau de anisotropia e N a ordem de quadratura. A solução desse sistema simbólico é obtida através da aplicação da transformada inversa de Laplace depois da inversão da matriz simbólica pelo método da diagonalização. Para a obtenção das constantes de integração é assumido que os componentes do vetor de Stokes são reais e as matrizes dos autovalores e autovetores são separadas em suas partes real e imaginária. A solução LTSN para autovalores complexos é validada através da comparação da solução para uma placa com espessura unitária, grau de anisotropia L = 13, albedo de espalhamento simples $ = 0:99, coe ciente de re exão de Lambert ¸0 = 0:1 e N = 150, segundo dados da literatura consultada.
Resumo:
Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.
Resumo:
Fenômenos naturais, tecnológicos e industriais podem, em geral, ser modelados de modo acurado através de equações diferenciais parciais, definidas sobre domínios contínuos que necessitam ser discretizados para serem resolvidos. Dependendo do esquema de discretização utilizado, pode-se gerar sistemas de equações lineares. Esses sistemas são, de modo geral, esparsos e de grande porte, onde as incógnitas podem ser da ordem de milhares, ou até mesmo de milhões. Levando em consideração essas características, o emprego de métodos iterativos é o mais apropriado para a resolução dos sistemas gerados, devido principalmente a sua potencialidade quanto à otimização de armazenamento e eficiência computacional. Uma forma de incrementar o desempenho dos métodos iterativos é empregar uma técnica multigrid. Multigrid são uma classe de métodos que resolvem eficientemente um grande conjunto de equações algébricas através da aceleração da convergência de métodos iterativos. Considerando que a resolução de sistemas de equações de problemas realísticos pode requerer grande capacidade de processamento e de armazenamento, torna-se imprescindível o uso de ambientes computacionais de alto desempenho. Uma das abordagens encontradas na literatura técnica para a resolução de sistemas de equações em paralelo é aquela que emprega métodos de decomposição de domínio (MDDs). Os MDDs são baseados no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções obtidas em cada um dos subdomínios Assim, neste trabalho são disponibilizados diferentes métodos de resolução paralela baseado em decomposição de domínio, utilizando técnicas multigrid para a aceleração da solução de sistemas de equações lineares. Para cada método, são apresentados dois estudos de caso visando a validação das implementações. Os estudos de caso abordados são o problema da difusão de calor e o modelo de hidrodinâmica do modelo UnHIDRA. Os métodos implementados mostraram-se altamente paralelizáveis, apresentando bons ganhos de desempenho. Os métodos multigrid mostraram-se eficiente na aceleração dos métodos iterativos, já que métodos que utilizaram esta técnica apresentaram desempenho superior aos métodos que não utilizaram nenhum método de aceleração.
Resumo:
Neste trabalho, apresentaremos uma solução analítica, aplicando o método da decomposição de Adomian, para as equações da cinética pontual para reatividade arbitrária, um sistema de equações diferenciais ordinárias do tipo "Stiff". Apresen- taremos, ainda, simulações numéricas para as reatividades do tipo constante, linear, senoidal e exponencial, bem como faremos comparações com resultados disponíveis na literatura.
Resumo:
A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.
Resumo:
Neste trabalho, examinamos em detalhe resultados recentes apresentados em [Zingano, 1999], [Zingano, 2004], [Zingano, 1996a] [T. Hagstrom, 2004] sobre o comportamento de soluções para equações (escalares) de ad vecção-difusão nãolineares, da forma Ut + div(f(u)) = div(A(u)V'u), x E ]Rn, t > O correspondentes a estados iniciais u(., O) E LI(]Rn) n DXJ(JRn).Aqui, A(u) E ]Rn é uniformemente positiva definida para todos os valores de u em questão, e f( u) = (f1(u),..., fn(u)) corresponde ao fluxo advectivo, com A, f suaves. Entre os vários resultados, tem-se em particular os limites assintóticos . !!. (I_l) Iml (47rÀ)~ 11mt2 p Ilu(" t)IILP(JRn) = (4 À)!!. - , t-++oo 7r 2 P para cada 1 :::;P :::;00, uniformemente em p, bem como lim t~(l-i) Ilu(" t) - u(',t)IILP(JRn) = O, t-++oo 1:::; p:::; 00 para duas soluçõesu(', t), u(', t) quaisquer correspondentesa estados iniciais u(', O),u(', O)E LI (]Rn) n Loo(]Rn) com a mesma massa, isto é, r u(x, O)dx = r u(x,O)dx JJRn JJRn Outra propriedade fundamental, válida em dimensão n ;:::2, é lim t%(l-~) Ilu(" t) - v(', t) IILP(JRn) = O t-++oo para cada 1 :::;p :::; 00, se v(', t) é solução da equação de advecção-difusão linear Vt + f (O) . V'v= div(A(O)V'v), x E ]Rn, t > O, com u(', O),v(', O) E U(]Rn) n Loo(JRn) tendo a mesma massa. Outros resultados de interesse são também discutidos.
Resumo:
A identificação de modelos é determinante no sucesso das modernas técnicas de controle avançado de processos. Um modelo para o sistema pode ser obtido através de modelagem rigorosa, baseada em equações governantes do sistema ou através da modelagem empírica e estimação de parâmetros. Embora mais rápida e fácil, a modelagem empírica necessita de alguns testes de identificação nos quais as variáveis manipuladas são variadas de modo que resultem em variações nas variáveis controladas. Os testes de identificação podem apresentar custos muito elevados tendo em vista que o sistema pode sair de seu ponto normal de operação, gerando produtos com folga de especificação. Este fato ocorre porque usualmente as perturbações aplicadas nas variáveis manipuladas nas indústrias de processos são independentes umas das outras, aumentando a duração do teste de identificação. Desta forma, neste trabalho foi desenvolvida uma nova metodologia de projeto de perturbações simultâneas para a identificação de modelos dinâmicos baseada na direcionalidade do sistema, com o objetivo de fornecer dados mais ricos para se capturar corretamente o comportamento multivariável do sistema e manter o processo no ponto de operação normal. As perturbações são projetadas conforme as características de um modelo simplificado do processo, ou pré-modelo. Este modelo inicial é obtido essencialmente de dados históricos de planta, selecionados através de uma sistemática análise de correlação desenvolvida neste trabalho A metodologia proposta é composta de duas partes: a primeira parte diz respeito à análise dos dados históricos de planta para obtenção de informações prelimirares as quais são utilizadas no planejamento de perturbações, tais como amplitude do ruído de medida, correlação entre as variáveis de processo, constante de tempo do sistema e matriz de ganhos. E a segunda parte consiste no cálculo da amplitude das perturbações baseado nos resultados da primeira etapa do planejamento. Para sistemas mal-condicionados verificou-se que as perturbações planejadas pela metodologia removem menos a planta de seu ponto de operação gerando resultados mais consistentes em relação às perturbações tradicionais. Já para sistemas bem-condicionados, os resultados são semelhantes. A metodologia foi aplicada em uma unidade piloto experimental e numa unidade de destilação da PETROBRAS, cujos resultados apontam pouca remoção dos sistemas do ponto de operação e modelos consistentes. A validação dos modelos também foi contemplada na dissertação, uma vez que foi proposto um novo critério de validação que considera a derivada dos dados de planta e a do modelo e não apenas os dados de planta e os dados da simulação das saídas do modelo.
Resumo:
Neste trabalho estudamos uma equação diferencial parcial elíptica semilinear contendo uma singularidade e um termo de crescimento crítico. A existência de soluções depende da dimensão do espaço e do coeficiente da singularidade. Através da caracterização variacional e com o uso de seqüências de Palais-Smale provamos que o problema possui soluções não triviais.
Resumo:
A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.
Resumo:
Neste trabalho desenvolvemos uma metodologia numérica para a solução do escoamento em torno de um vórtice. Como a análise completa deste tipo de fluxo não é uma tarefa fácil, simplificações quanto ao escoamento e ao método numérico são necessárias. Também investigamos o comportamento das soluções das equações governantes (Navier-Stokes) quando o tempo tende ao infinito. Nesse sentido, dividimos este trabalho em duas partes: uma numérica e outra analítica. Com o intuito de resolver numericamente o problema, adotamos o método de diferenças finitas baseado na formulação incompressível das equações governantes. O método numérico para integrar essas equações é baseado no esquema de Runge- Kutta com três estágios. Os resultados numéricos são obtidos para cinco planos bidimensionais de um vórtice com números de Reynolds variando entre 1000 e 10000. Na parte analítica estudamos taxas de decaimento das soluções das equações de Navier-Stokes quando os dados iniciais são conhecidos. Também estimamos as taxas de decaimento para algumas derivadas das soluções na norma L2 e comparamos com as taxas correspondentes da solução da equação do calor.
Resumo:
Neste trabalho, são obtidas diversas propriedades (em especial, referentes ao comportamento ao t -+ +00) das soluções u(', t) da equação linear do calor, Ut = div(AV'u), x E JRn, t > O onde A E JRnxné uma matriz constante simétrica e positiva definida, correspondentes a estados iniciais p-somáveis, i.e., u(x, O) = uo(x), Uo E LP(JRn), onde 1 :::;p < 00. Em particular, é examinado o comportamento de Ilu(., t)IILP(lRn) ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dXI quando p = 1, e Ilu(-' t)IILP(lRn)-+ O quando p > 1. São analisadas, também, as taxas de decaimento e o comportamento assintótico das soluções u(', t) de equações de advecção-difusão da forma Ut + divf(u) = div(A(u)V'u), x E JRn, t > O correspondentes a estados iniciais p-somáveis e limitados, i.e., u(x, O)= uo(x), u(', O) E LP(JRn) n LOO(JRn), onde 1 :::;p :::; 2. Novamente, é examinado o comportamento de Ilu(" t)IILP(lRn)ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dxl quando p = 1, e Ilu(" t)IILP(lRn)-+ O quando p > 1. Várias outras propriedades importantes são também discutidas, seguindo principalmente [Silva, 2003], [Crandall e Tartar, 1980], [Hagstrom et al., 2003], [Zingano, 1999], [Zingano, 2004a], [Zingano, 2004b].
Resumo:
Neste trabalho é estudada a convexidade dos conjuntos de nível das soluções de dois problemas envolvendo equações elípticas. O primeiro desses problemas se refere a uma equação da forma 4u = °(u) em um anel convexo, com condições de fronteira u = 0 na fronteira externa e u = 1 na fronteira interna. Para provar a existência de solução do problema utiliza-se o método variacional. O problema de mostrar a convexidade dos conjuntos de nível é transformado em um problema de maximizar uma certa função. O segundo problema considerado é o de mostrar que é log-côncava a primeira autofunção do laplaciano, que tenha como peso uma função côncava.
Resumo:
Esta tese apresenta um estudo do comportamento térmico de um coletor solar acumulador e desenvolve uma metodologia para medir a sua eficiência diária. O coletor solar acumulador está instalado na face norte do prédio de Energia Solar da UFRGS e possui cerca de 26 m2. É constituído de uma massa espessa de concreto com uma superfície absorvente feita de tijolos, possuindo uma cobertura dupla de vidros colocada de modo a deixar um espaço para a circulação de ar. Os raios solares atravessam a cobertura de vidro e aquecem a massa absorvente de tijolo, a qual aquece o ar que é introduzido no interior da construção por efeito de termossifão. Uma das principais características do coletor solar acumulador consiste no fato de que a resposta do coletor é defasada no tempo. Este fenômeno permite que o coletor entregue calor ao ambiente mesmo após o término da radiação solar. Essa defasagem dos picos de energia térmica ocorre devido ao baixo valor da difusividade térmica do concreto. Este trabalho foi dividido em duas etapas. A primeira etapa consistiu na montagem de um calorímetro para controle e monitoração das variáveis envolvidas. No interior do calorímetro foram instaladas 36 garrafas com água. As temperaturas dos conteúdos das garrafas, do coletor solar e as radiações envolvidas foram monitoradas através de 26 sensores de temperatura de CI, 8 sensores resistivos PT100 e dois sensores de radiação fotovoltaicos. Para obter as medidas dos sensores instalados foi feita a montagem de um sistema de aquisição de dados interfaceado a um microcomputador A segunda etapa consistiu na produção de um programa computacional, escrito em linguagem Fortran 90, para simular o comportamento térmico dos diversos elementos constituintes do coletor, determinar a potência térmica do coletor solar e sua eficiência diária. Para a simulação numérica do coletor solar acumulador, adotou-se um modelo simplificado bidimensional do mesmo. Foi integrada, através do Método dos Volumes Finitos, a equação de difusão de calor transiente em 2 dimensões. Na formulação das equações lineares optou-se pelo emprego das diferenças centrais no espaço e formulação explícita no tempo. Ao todo foram produzidas 4 malhas computacionais, com distintos refinamentos e foi realizado o estudo da estabilidade numérica das diversas malhas. Através da montagem experimental obtiveram-se várias características térmicas do comportamento do sistema, entre as quais, a transmitância da cobertura, curvas de temperatura do ar fornecido ao calorímetro e curva da eficiência diária do coletor solar . Através da simulação numérica foi possível determinar a potência térmica que o coletor entrega para o laboratório, a eficiência do coletor, os campos de temperatura e a vazão mássica nos diversos canais interiores do coletor solar.
Análise de escoamentos incompressíveis utilizando simulação de grandes escalas e adaptação de malhas
Resumo:
No presente estudo, são apresentadas soluções numéricas de problemas de Engenharia, na área de Dinâmica dos Fluidos Computacional, envolvendo fluidos viscosos, em escoamentos incompressíveis, isotérmicos e não isotérmicos, em regime laminar e turbulento, podendo envolver transporte de massa. Os principais objetivos deste trabalho são a formulação e a aplicação de uma estratégia de adaptação automática de malhas e a inclusão de modelos de viscosidade turbulenta, integrados com um algoritmo utilizado para simular escoamentos de fluidos viscosos bi e tridimensionais, no contexto de malhas não estruturadas. O estudo é dirigido no sentido de aumentar o conhecimento a respeito das estruturas de escoamentos turbulentos e de estudar os efeitos físicos no transporte de quantidades escalares propiciando, através de técnicas de adaptação automática de malhas, a obtenção de soluções numéricas precisas a um custo computacional otimizado. As equações de conservação de massa, de balanço de quantidade de movimento e de quantidade escalar filtradas são utilizadas para simular as grandes escalas de escoamentos turbulentos e, para representar as escalas submalha, são utilizados dois modelos de viscosidade turbulenta: o modelo de Smagorinsky clássico e o modelo dinâmico. Para obter soluções numéricas com precisão, é desenvolvida e implementada uma estratégia de adaptação automática de malhas, a qual é realizada simultaneamente e interativamente com a obtenção da solução. O estudo do comportamento da solução numérica é fundamentado em indicadores de erro, com o propósito de mapear as regiões onde certos fenômenos físicos do escoamento ocorrem com maior intensidade e de aplicar nestas regiões um esquema de adaptação de malhas. A adaptação é constituída por processos de refinamento/desrefinamento e por um processo de suavização laplaciana. Os procedimentos para a implementação dos modelos de viscosidade turbulenta e a estratégia de adaptação automática de malhas são incorporados ao código computacional de elementos finitos tridimensionais, o qual utiliza elementos tetraédricos lineares. Aplicações de escoamentos de fluidos viscosos, incompressíveis, isotérmicos e não isotérmicos em regime laminar e turbulento são simuladas e os resultados são apresentados e comparados com os obtidos numérica ou experimentalmente por outros autores.