33 resultados para marcadores neurais


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta dissertação, faz-se um estudo do gênero artigo científico, em especial de expressões típicas de seu desenvolvimento e organização. Essas expressões foram denominadas marcadores textuais, e os objetivos deste trabalho foram identificá-las e verificar seus padrões de uso em textos em português e inglês, em um estudo permeado pelos interesses e pelas perspectivas da tradução e apoiado pelos pressupostos da Retórica Contrastiva. Para esse fim, foram utilizados dois corpora: um em português, composto de 333 artigos, e outro em inglês, composto de 111 artigos. Os mesmos foram analisados utilizandose a ferramenta WordSmith Tools, empregada pelos estudos em Lingüística de Corpus. Os marcadores selecionados a partir dos corpora foram classificados com base nas metafunções da linguagem propostas por Halliday. Após essa classificação, comparamos as ocorrências das unidades em inglês e português, observando padrões de uso, freqüência e colocação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo propõe um método alternativo para a previsão de demanda de energia elétrica, através do desenvolvimento de um modelo de estimação baseado em redes neurais artificiais. Tal método ainda é pouco usado na estimativa de demanda de energia elétrica, mas tem se mostrado promissor na resolução de problemas que envolvem sistemas de potência. Aqui são destacados os principais fatores que devem pautar a modelagem de um sistema baseada em redes neurais artificiais, que são: seleção das variáveis de entrada; quantidade de variáveis; arquitetura da rede; treinamento; previsão da saída. O modelo ora apresentado foi desenvolvido a partir de uma amostra de 125 municípios do Estado do Rio Grande do Sul (Brasil), nos anos de 1999 a 2002. Como variáveis de entrada, foram selecionados a temperatura ambiente (média e desvio-padrão anual), a umidade relativa do ar (média e desvio-padrão anual), o PIB anual e a população anual de cada município incluído na amostra. Para validar a proposta apresentada, são mostrados resultados baseados nas simulações com o modelo proposto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nossos resultados portanto sugerem que a utilização de agentes terapêuticos como a suplementação de antioxidantes e do exercício físico pode amenizar os efeitos deletérios induzidos pela exposição ao carvão mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O estudo foi feito através de séries históricas de dados de um incubatório pertencente a uma integração avícola do Rio Grande do Sul, durante os anos de 1999 a 2003, com os quais foram feitas análises do tipo observacional analítico e transversal. Primeiramente usou-se os registros de 5 linhagens de frangos utilizadas pela empresa no transcorrer do período de 23 de fevereiro de 1995 a 25 de janeiro de 2002. As linhagens foram identificadas da seguinte forma: COBB, HIGH YIELD, MPK, ROSS308, e X. Esses 81 lotes analisados foram estudados através dos seus respectivos registros que continham: o número inicial de fêmeas, número inicial de machos, ração total/cabeça, ração/cabeça/inicial/recria, ração/cabeça/inicial/postura, ovos postos, ração p/ovo posto, pintos nascidos, percentagem viabilidade postura fêmea, percentagem viabilidade postura machos. O método aqui proposto provou ser capaz de classificar as linhagens a partir das entradas escolhidas. Na linhagem que apresentava uma grande quantidade de amostras a classificação foi muito precisa. Nas demais, com menor número de dados, a classificação foi efetuada, e, como era de se esperar, os resultados foram menos consistentes. Com o mesmo banco de dados dos lotes fechados, realizou-se a segunda etapa da dissertação. Nela, procedeu-se o treinamento das redes neurais artificiais onde foram utilizadas as seguintes variáveis de saída: ovos incubáveis, percentagem de ovos incubáveis, ovos incubados, percentagem de ovos incubados, pintos nascidos e pintos aproveitáveis. Os resultados apresentaram R2 oscilando entre 0,93 e 0,99 e o erro médio e o quadrado médio do erro ajustados, demonstrando a utilidade das redes para explicar as variáveis de saída. Na terceira e última etapa da dissertação, destinada à validação dos modelos, foram usados quatro arquivos distintos denominados da seguinte forma: INPESO (3.110 linhas de registros de pesos dos reprodutores), ININFO (56.018 linhas de registros com as informações diárias do ocorrido nas granjas de reprodução até o incubatório), INOVOS (35.000 linhas de registros com informações sobre os ovos processados), INNASC: 43.828 linhas de registros com informações sobre os nascimentos. O modelo gerado para o ano de 1999 foi capaz de predizer corretamente os resultados deste mesmo ano e dos anos de 2000, 2001, 2002 e 2003. O mesmo procedimento foi repetido criando modelo com os registros do ano em questão e validando-o com os registros dos anos subseqüentes. Em todas as ocasiões foram obtidos bons resultados traduzidos por um alto valor no R2. Concluindo, os fenômenos próprios do incubatório puderam ser explicados através das redes neurais artificiais. A técnica, seguindo a mesma tendência das dissertações que anteriormente já haviam demonstrado que esta metodologia pode ser utilizada para o gerenciamento de reprodutoras pesadas e de frangos de corte, pode realizar simulações, predições e medir a contribuição de cada variável no fenômeno observado, tornando-se uma poderosa ferramenta para o gerenciamento do incubatório e num suporte cientificamente alicerçado para a tomada de decisão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo principal deste trabalho é propor uma metodologia de classificação de imagens de sensoriamento remoto que integre a importância de atributos de textura na seleção de feições, através da utilização de freqüências espaciais de cada classe textural e sua direção, com a eficiência das redes neurais artificiais para classificá-las. O processo é composto por uma etapa de filtragem baseada nos filtros de Gabor, seguida de uma fase de classificação através de uma rede neural Multi-Layer Perceptron com algoritmo BackPropagation. A partir da transformada de Fourier são estimados os parâmetros a serem utilizados na constituição dos filtros de Gabor, adequados às freqüências espaciais associadas a cada classe presente na imagem a ser classificada. Desta forma, cada filtro gera uma imagem filtrada. O conjunto de filtros determina um conjunto de imagens filtradas (canais texturais). A classificação pixel a pixel é realizada pela rede neural onde cada pixel é definido por um vetor de dimensionalidade igual ao número de filtros do conjunto. O processo de classificação através da rede neural Multi-Layer Perceptron foi realizado pelo método de classificação supervisionada. A metodologia de classificação de imagens de sensoriamento remoto proposta neste trabalho foi testada em imagens sintética e real de dimensões 256 x 256 pixels. A análise dos resultados obtidos é apresentada sob a forma de uma Matriz de Erros, juntamente com a discussão dos mesmos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo objetivou demonstrar que é possível explicar os fenômenos que ocorrem na criação de frangos de corte através de redes neurais artificiais. A estatística descritiva e a diferença entre as médias das variáveis dos dados iniciais foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foi utilizada uma série histórica de dados de produção de frangos de corte, obtidos nos anos de 2001 e 2002, fornecidos por uma Integração Avícola do Rio Grande do Sul, contendo informações de 1.516 criadores com lotes alojados em 2001 e 889 criadores com lotes alojados em 2002. Nos arquivos estavam registrados, para cada lote, suas variáveis de produção, tais como número do lote, data do alojamento, data do abate, idade ao abate, número de pintos alojados, quilogramas de ração consumidos, quilogramas de frangos produzidos, número de aves abatidas, custo do frango produzido, mortalidade, peso médio, ganho de peso diário, índice de conversão alimentar, índice de eficiência, quilogramas líquido de frangos, quilogramas de ração inicial, quilogramas de ração crescimento, quilogramas de ração abate, além de outros. Para a construção das redes neurais artificiais foi utilizado o programa computacional NeuroShell®Predictor, desenvolvido pela Ward Systems Group. Ao programa foi identificado as variáveis escolhidas como “entradas” para o cálculo do modelo preditivo e a variável de “saída” aquela a ser predita. Para o treinamento das redes foram usados 1.000 criadores do banco de dados do alojamento de frangos de corte de 2001. Os restantes 516 criadores de 2001 e todos os 889 criadores de 2002 serviram para a validação das predições, os quais não participaram da etapa de aprendizagem, sendo totalmente desconhecidos pelo programa. Foram gerados 20 modelos na fase de treinamento das redes neurais artificiais, com distintos parâmetros de produção ou variáveis (saídas). Em todos estes modelos, as redes neurais artificiais geradas foram bem ajustadas apresentando sempre, um Coeficiente de Determinação Múltipla (R²) elevado e o menor Quadrado Médio do Erro (QME). Ressalta-se que o R² perfeito é 1 e um coeficiente muito bom deve estar próximo de 1. Todos os 20 modelos, quando validados com os 516 lotes de 2001 e com 889 de 2002, apresentaram também Coeficientes de Determinação Múltipla (R²) elevados e muito próximos de 1, além de apresentarem o Quadrado Médio do Erro (QME) e Erro Médio reduzidos. Foi comprovado não haver diferenças significativas entre as médias dos valores preditos e as médias dos valores reais, em todas as validações efetuadas nos lotes abatidos em 2001 e em 2002, quando aplicados os 20 modelos de redes neurais gerados. Como conclusão, as redes neurais artificiais foram capazes de explicar os fenômenos envolvidos com a produção industrial de frangos de corte. A técnica oferece critérios objetivos, gerados cientificamente, que embasarão as decisões dos responsáveis pela produção industrial de frangos de corte.Também permite realizar simulações e medir a contribuição de cada variável no fenômeno em estudo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Eletroconvulsoterapia é atualmente o método mais efetivo no manejo dos transtornos depressivos, e sua superioridade frente ao tratamento farmacológico apresenta-se bem documentada. Apesar disso, críticos ainda vêem o método como potencialmente danoso e capaz de provocar lesões cerebrais, fatos que carecem de comprovação científica. Hipóteses quanto aos mecanismos bioquímicos desencadeados pela eletroconvulsoterapia, bem como pelos antidepressivos de um modo geral, voltam-se tradicionalmente para o sistema monoaminérgico como principal envolvido na orquestração subjacente à recuperação dos sintomas de humor. Há algum tempo esforços têm sido direcionados para identificação de outros sistemas que possam estar desempenhando um importante papel. Nesta tese utilizamos um tradicional modelo de choque eletroconvulsivo em ratos para investigar seus efeitos sobre marcadores de lesão neuronal, atividade e consumo energético glial, bem como atividade de ectonucleotidases. Ratos wistar machos com 60 a 90 dias de idade foram alocados a dois tratamentos. No primeiro, denominado agudo, os indivíduos receberam um único choque eletroconvulsivo, sendo posteriormente sacrificados em horários predeterminados. No segundo modelo, crônico, os ratos receberam 8 choques eletroconvulsivos, mimetizando um curso de tratamento de eletroconvulsoterapia. O sacrifício dos ratos no modelo crônico ocorreu após o oitavo choque, também em momentos predeterminados. No primeiro trabalho foi extraído o líquor dos animais 0, 3, 6, 12, 24, 48 e 72 horas após terminadas as sessões, sendo medidos os níveis de proteína S100B, enolase específica do neurônio e lactato. Os níveis de S100B apresentavam-se significativamente elevados seis horas após o último choque no modelo crônico (p<0,0001). Enolase específica do neurônio não teve alterações, e os níveis de lactato aumentaram significativamente na primeira medição após o choque, tanto no modelo crônico quanto no agudo (p<0,001, para ambos). No segundo trabalho, o mesmo modelo foi usado, agora com medições nos níveis séricos da hidrólise de nucleotídeos da adenina. Nosso modelo agudo demonstrou uma diminuição significativa da hidrólise de ATP, ADP e AMP, no primeiro momento medido após o choque, 0 horas (p<0,05 para ATP, e p<0,01 para ADP e AMP), enquanto no modelo crônico avaliou-se que a atividade sérica da enzima aumentava significativamente 48 horas após o último choque (p<0,05 para os três nucleotídeos), permanecendo significativamente aumentada 7 dias após (p<0,001 para os três nucleotídeos). Assim, os resultados do primeiro trabalho apóiam a proposta de que o choque eletroconvulsivo não produz dano neural, e que as alterações observadas nos níveis de S100B e lactato, refletem uma reação astrocitária de natureza protetora. No segundo observamos que o modelo crônico de choque eletroconvulsivo é capaz de induzir ativações enzimáticas sustentadas, o que pode apoiar a idéia de que a adenosina esteja associada com os mecanismos bioquímicos envolvidos nas mudanças cerebrais ocasionadas pela eletroconvulsoterapia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algoritmos ótimos na extração de componentes principais com aprendizado não-supervisionado em redes neurais de múltiplos neurônios de saída são não-locais, ou seja, as modificações em uma dada sinapse entre dois neurônios dependem também da atividade de outros neurônios. Esta rede ótima extrairá as principais componentes dos dados e submetidos à sua primeira camada. As principais componentes são as projeções destes vetores nos autovalores máximos da matriz de correlação Gij = (eiej), onde a média (-) é sobre a distribuição de e. Existem fortes evidências indicando que sinapses biológicas só se modificam via regras locais, como por exemplo a regra de Hebb. Mas se aplicarmos regras locais numa rede com múltiplas saídas, todos os neurônios da saída serão equivalentes e darão respostas redundantes. A rede será bastante ineficiente. Um modo de contornar este problema é através da restrição dos campos receptivos dos neurônios de saída. Se cada neurônio acessar diferentes partes dos estímulos de entrada, a redundância diminui significativamente. Em contrapartida, ao mesmo tempo que a redundância diminui, também diminui a informação contida em cada neurônio; assim, devemos balancear os dois efeitos otimizando o campo receptivo. O valor ótimo, em geral, depende da natureza dos estímulos, sua estatística, e também do ruído intrínseco à rede. Objetivamos com este trabalho determinar a estrutura ótima de campos receptivos com aprendizado não-supervisionado para uma rede neural de uma camada em diversas condições medindo seu desempenho a partir de técnicas de reconstrução.