17 resultados para logica matematica tavole semantiche
Resumo:
A comunicação é essencial para a vida em grupo, e se dá através da linguagem. Existem diversas formas de linguagem, porém a linguagem matemática vai além das demais, pois é universal. O advento dos aparelhos eletrônicos e, em especial, do computador, tornou possível o desenvolvimento de padrões e aplicativos que pudessem manipular símbolos matemáticos eletronicamente. A Web trouxe consigo a linguagem HTML para visualização de textos e, mais atualmente, o padrão de linguagem de marcação XML e seus aplicativos, que têm características melhores que o HTML quanto à estruturação, armazenamento e indexação de dados. Uma das aplicações advindas do XML foi a linguagem de marcação matemática MathML, que contribui para a manipulação e visualização de formalismos matemáticos na Web, e vem se tornando um padrão no meio acadêmico, educacional e comercial. As diversas aplicações matemáticas (editores, ambientes matemáticos) desenvolvidas para o computador geralmente não permitem a discussão em linguagem matemática de forma síncrona pela rede de computadores. Sabe-se que na Internet a conexão de pessoas num mesmo momento através de ferramentas síncronas é muito difundida, como é o caso de aplicativos do tipo bate-papo; no entanto, esses aplicativos não possuem funcionalidades que permitam a troca de textos matemáticos. Há, portanto, uma limitação em relação a ferramentas de comunicação síncrona para matemática na Web. Este trabalho quer oferecer uma alternativa ao público que deseje trocar formalismos matemáticos de forma síncrona pela Web, a fim de verificar se esse tipo de ferramenta é efetivamente usável para discussões matemáticas. Para isso, foi desenvolvido um protótipo que reúne as características de uma ferramenta típica de bate-papo com as vantagens advindas das linguagens de marcação: o ChatMath. O trabalho também aponta características de aplicativos matemáticos e de ferramentas síncronas textuais e descreve as linguagens de marcação matemática. Para fins de avaliação do protótipo desenvolvido, fez-se uma pesquisa a fim de verificar sua efetiva utilidade para troca de formalismos matemáticos, dentro do contexto educacional. Os resultados dessa pesquisa confirmam a hipótese levantada, embora identifiquem modificações funcionais e de uso da ferramenta, havendo necessidade de reaplicação da avaliação, para se obter resultados mais detalhados.
Resumo:
Este trabalho estuda a teoria de desenho de mecanismo. Desenho de mecanismo passou a fazer parte da teoria econômica à partir da década de 60. Seu desenvolvimento deve-se, em grande parte aos trabalhos de Vickrey, Clarke e Groves relacionados a problemas de incentivo. Esta dissertação apresenta os principais desenvolvimentos teóricos na área de desenho de mecanismo, destacando a importância dos conhecidos teoremas de envelope para estes problemas. É apresentada também uma nova versão do teorema de envelope desenvolvida por Milgrom e Segal que pode amplamente ser empregada em problemas de desenho de mecanismos. Essa nova versão do teorema de envelope de Milgron e Segal permite relaxar algumas hipóteses restritivas da teoria de desenho de mecanismos, permitindo obter novos resultados e explorar aqueles já estabelecidos, principalmente em problemas relacionados a desenhos de leilões.