18 resultados para Simulacao : Trafego


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na simulação heterogênea de um sistema eletrônico complexo, um mesmo modelo pode ser composto por partes distintas em relação às tecnologias ou linguagens utilizadas na sua descrição, níveis de abstração, ou pela combinação de partes de software e de hardware (escopo da co-simulação). No uso de modelos heterogêneos, a construção de uma ponte eficaz entre diferentes simuladores, em conjunto com a solução de problemas tais como sincronização e tradução de dados, são alguns dos principais desafios. No contexto do projeto de sistemas embarcados, a validação desses sistemas via co-simulação está sujeita a estes desafios na medida em que um mesmo modelo de representação precisa suportar a cooperação consistente entre partes de hardware e de software. Estes problemas tornam-se mais significativos quando abordados em ambientes distribuídos, o que aumenta a complexidade dos mecanismos que gerenciam os ítens necessários à correta cooperação entre partes diferentes. Contudo, embora existam abordagens e ferramentas voltadas para o tratamento de modelos heterogêneos, inclusive em ambientes distribuídos, ainda persiste uma gama de limitações causadas pela distribuição e heterogeneidade de simuladores. Por exemplo, restrições quanto à variedade de tecnologias (ou linguagens) utilizadas na descrição das partes de um modelo, flexibilidade para o reuso de partes existentes, ou em tarefas de gerenciamento de sincronização/dados/interface/distribuição. Além disso, em geral, nas soluções existentes para simulação heterogênea, alterações são necessárias sobre as partes do modelo, limitando a preservação de sua integridade. Esta é uma característica indesejável, por exemplo, no reuso de componentes IP (Intellectual Property) Neste contexto, esta tese apresenta o DCB (Distributed Co-simulation Backbone), cujo propósito geral é o suporte à execução distribuída dos modelos heterogêneos. Para isso, são observados de modo integrado quatro fatores básicos: a distribuição física; a independência dos componentes (partes); o encapsulamento das estratégias de gerenciamento de tempo, de dados e de comunicação; e a sincronização híbrida. Em geral, as soluções existentes valorizam um fator em detrimento dos demais, dependendo dos propósitos envolvidos e sua variação em relação ao grau de especificidade (soluções proprietárias ou restritas a um escopo de aplicações). O Tangram, também discutido nesta tese em termos de requisitos, é uma proposta de ambiente para projeto de modelos heterogêneos distribuídos. No contexto da especificação do DCB, esta proposta tem como objetivo geral agregar num mesmo ambiente funcionalidades de apoio para a busca e catalogação de componentes, seguidas do suporte à construção e à execução distribuída de modelos heterogêneos via DCB. À luz dos princípios de generalidade e flexibilidade da arquitetura do DCB, o Tangram visa permitir que o projetista reduza seu envolvimento com detalhes relacionados ao provimento de condições necessárias à cooperação entre componentes heterogêneos. No escopo desta tese, ênfase foi dada à co-simulação de sistemas embarcados, ênfase esta observada também na construção do protótipo do Tangram/DCB, e nos estudos de caso. Contudo, a estrutura do DCB é apropriada para qualquer domínio onde a simulação possa ser utilizada como instrumento de validação, entre outros propósitos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A velocidade de veículos em vias públicas pode ser obtida de diversas formas. A técnica mais usada é de laços magnéticos, onde se instalam sensores sob o asfalto. Entretanto, esta técnica apresenta desvantagens, tais como, a não detecção de motocicletas (o campo magnético gerado por este tipo de veículo é imperceptível ao sistema) e dificuldade de manutenção da via (se o órgão publico tiver que mexer numa rede cloacal que passa perto dos sensores, por exemplo, pode ser necessário reinstalá-los). Nesse contexto, este trabalho propõe-se a discutir uma nova maneira de se calcular a velocidade de veículos, através do processamento de imagens. Para isto, torna-se fundamental conhecer os conceitos que envolvem as técnicas mais utilizadas (além dos laços magnéticos, a captura de dois quadros consecutivos e o sistema Doppler), os equipamentos disponíveis no mercado (Pardais, Lombadas Eletrônicas, Bandeiras, Caetanos e Radares) e a forma como o INMETRO faz a aferição destes equipamentos. O estudo apresenta, igualmente, os principais fundamentos relacionados ao processamento digital de imagens, com especial atenção para detecção de bordas, de forma que seja possível avaliar a nova técnica proposta, que calcula a velocidade a partir de um único quadro. O presente trabalho objetiva apresentar o Pardalzito como alternativa técnica inovadora para aplicação de um, sistema que implementa esta idéia na prática.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A validação de projetos de sistemas eletrônicos pode ser feita de diversas maneiras, como tem sido mostrado pelas pesquisas em síntese automática e verificação formal. Porém, a simulação ainda é o método mais utilizado. O projeto de um sistema digital típico pode ser desenvolvido em diversos níveis de abstração, como os níveis algorítmico, lógico ou analógico. Assim, a simulação também deve ser executada em todos esses níveis. A simulação apresenta, contudo, o inconveniente de não conseguir conciliar uma alta acuracidade de resultados com um baixo tempo de simulação. Quanto mais detalhada é a descrição do circuito, maior é o tempo necessário para simulá-lo. O inverso também é verdadeiro, ou seja, quanto menor for a acuracidade exigida, menor será o tempo dispendido. A simulação multinível tenta conciliar eficiêencia e acuracidade na simulação de circuitos digitais, propondo que partes do circuito sejam descritas em diferentes níveis de abstração. Com isso, somente as partes mais críticas do sistema são descritas em detalhes e a velocidade da simulação aumenta. Contudo, essa abordagem não é suficiente para oferecer um grande aumento na velocidade de simulação de grandes circuitos. Assim, surge como alternativa a aplicação de técnicas de processamento distribuído à simulação multinível. Os aspectos que envolvem a combinação dessas duas técnicas são abordados nesse trabalho. Como plataforma para os estudos realizados, optou-se por usar duas ferramentas desenvolvidas nessa Universidade: os simuladores do Sistema AMPLO e o Sistema Operacional HetNOS. São estudadas técnicas de sincronização em sistemas distribuídos, fundamentais para o desenvolvimento dos simuladores e, finalmente, são propostas alternativas para a distribuição dos simuladores. É realizada, ainda, uma análise comparativa entre as versões propostas.