24 resultados para Sensoriamento de gases
Resumo:
Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta, dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade [FUK 90] tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas de regularização da matriz covariância. Deste modo, técnicas de regularização para a estimação da matriz covariância das classes, tornam-se um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo, é feita uma contextualização em sensoriamento remoto, descrito o sistema sensor AVIRIS, os princípios da análise discriminante linear (LDA), quadrática (QDA) e regularizada (RDA) são apresentados, bem como os experimentos práticos dos métodos, usando dados reais do sensor. Os resultados mostram que, com um número limitado de amostras de treinamento, as técnicas de regularização da matriz covariância foram eficientes em reduzir o Efeito de Hughes. Quanto à acurácia, em alguns casos o modelo quadrático continua sendo o melhor, apesar do Efeito de Hughes, e em outros casos o método de regularização é superior, além de suavizar este efeito. Esta dissertação está organizada da seguinte maneira: No primeiro capítulo é feita uma introdução aos temas: sensoriamento remoto (radiação eletromagnética, espectro eletromagnético, bandas espectrais, assinatura espectral), são também descritos os conceitos, funcionamento do sensor hiperespectral AVIRIS, e os conceitos básicos de reconhecimento de padrões e da abordagem estatística. No segundo capítulo, é feita uma revisão bibliográfica sobre os problemas associados à dimensionalidade dos dados, à descrição das técnicas paramétricas citadas anteriormente, aos métodos de QDA, LDA e RDA, e testes realizados com outros tipos de dados e seus resultados.O terceiro capítulo versa sobre a metodologia que será utilizada nos dados hiperespectrais disponíveis. O quarto capítulo apresenta os testes e experimentos da Análise Discriminante Regularizada (RDA) em imagens hiperespectrais obtidos pelo sensor AVIRIS. No quinto capítulo são apresentados as conclusões e análise final. A contribuição científica deste estudo, relaciona-se à utilização de métodos de regularização da matriz covariância, originalmente propostos por Friedman [FRI 89] para classificação de dados em alta dimensionalidade (dados sintéticos, dados de enologia), para o caso especifico de dados de sensoriamento remoto em alta dimensionalidade (imagens hiperespectrais). A conclusão principal desta dissertação é que o método RDA é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.
Resumo:
O manejo sustentado de agroecossitemas passa pelo planejamento de uso dos mesmos, para o que necessitam ser avaliados os recursos naturais e as condições sociais, culturais e econômicas dos habitantes nestes encontrados. ferramentas de geoprocessamento e sensoriamento remoto, que permitem avaliar os recursos de grandes áreas e anexar a bancos de dados georreferenciados, foram utilizados para caracterizar o meio físico e planejar o uso da fazenda El P, Departamento de Cerro largo, Uruguai. dados topográficos, planialtimétricos, de clima, solo e uso atual, foram usados para gerar os planos de informação: mapa base, modelo numérico do terreno, declividade, clima e recursos hídricos, solos, aptidão de uso dos solos, uso atual, zoneamento ambiental e conflito de uso. A pesquisa mostra que a região apresenta déficit hídrico de novembro a março; Planossolos, Solos Podzólicos, Brunizém, Vertissolos e Solos Gley predominam na mesma; estes solos apresentam ampla faixa de aptidão de uso, que facilita o zoneamento ambiental ecológico da mesma. Se considerarmos que a tradicional pecuária desenvolvida nas áreas onduladas e arroz nas várzeas constitui o uso adequado dos solos, lavouras de arroz encontradas ao longo de sistemas de drenagem, onde deveria ser mantida a vegetação ciliar natural, constitui o principal conflito de uso relacionado ao zoneamento ambiental da região. O geoprocesssamento e sensoriamento remoto mostraram-se eficientes no planejamento de uso da Fazenda Pantanoso.
Resumo:
Este trabalho objetiva realizar um estudo sobre a contribuição antrópica no processo de formação de gases do efeito estufa e seus possíveis reflexos sobre as mudanças climáticas, em curso no planeta Terra. Após uma pesquisa inicial sobre as causas deste fenômeno, são identificadas as iniciativas internacionais em curso para mitigação do processo de aquecimento global, propostas pela Convenção Quadro das Nações Unidas para Mudança do Clima (CQNUMC), particularmente, em relação ao Mecanismo de Desenvolvimento Limpo (MDL) estabelecido pelo Protocolo de Kyoto. Em âmbito mundial, a contribuição de gases formadores do efeito estufa gerados nas atividades de transporte é bastante significativa ocupando o segundo lugar, atrás apenas das emissões provocadas pelas atividades industriais. Esta posição natural, somada às oportunidades existentes no território brasileiro para o uso alternativo de combustíveis oriundos de fontes renováveis e fósseis com menor nível de emissões, impulsionaram este estudo para a pesquisa das condições existentes e análise das alternativas energéticas de menor impacto ambiental Adicionalmente, foi desenvolvida uma análise da contribuição da atividade de transporte rodoviário nas emissões de gases formadores do efeito estufa (GEE), através do exemplo de um caso hipotético. Trata-se da análise comparativa dos inventários de emissões de GEE, antes e depois da conversão de motores ciclo Otto de uma frota de veículos leves, originalmente movidos à gasolina (gasool), para os combustíveis alternativos gases natural e álcool hidratado. Após análise dos resultados obtidos, em cada um dos cenários selecionados, as alternativas propostas são comparadas identificando-se a melhor opção para redução de emissões de GEE.
Resumo:
O objetivo principal deste trabalho é propor uma metodologia de classificação de imagens de sensoriamento remoto que integre a importância de atributos de textura na seleção de feições, através da utilização de freqüências espaciais de cada classe textural e sua direção, com a eficiência das redes neurais artificiais para classificá-las. O processo é composto por uma etapa de filtragem baseada nos filtros de Gabor, seguida de uma fase de classificação através de uma rede neural Multi-Layer Perceptron com algoritmo BackPropagation. A partir da transformada de Fourier são estimados os parâmetros a serem utilizados na constituição dos filtros de Gabor, adequados às freqüências espaciais associadas a cada classe presente na imagem a ser classificada. Desta forma, cada filtro gera uma imagem filtrada. O conjunto de filtros determina um conjunto de imagens filtradas (canais texturais). A classificação pixel a pixel é realizada pela rede neural onde cada pixel é definido por um vetor de dimensionalidade igual ao número de filtros do conjunto. O processo de classificação através da rede neural Multi-Layer Perceptron foi realizado pelo método de classificação supervisionada. A metodologia de classificação de imagens de sensoriamento remoto proposta neste trabalho foi testada em imagens sintética e real de dimensões 256 x 256 pixels. A análise dos resultados obtidos é apresentada sob a forma de uma Matriz de Erros, juntamente com a discussão dos mesmos.
Resumo:
Informações sobre as condições de crescimento e expectativa de produção de culturas são importantes para a economia brasileira, visto que permitem um planejamento adequado da economia agrícola, contornando problemas de escassez e administrando com vantagens o excesso de produtos. Neste contexto, as tecnologias de sensoriamento remoto e geoprocessamento permitem a obtenção de informações precisas, em tempo hábil e com baixo custo. O presente trabalho teve como principal objetivo gerar subsídios para o aprimoramento do sistema atual de acompanhamento e previsão da safra de soja no Brasil, incorporando técnicas de sensoriamento remoto e geoprocessamento. Como objetivos específicos, buscou-se avaliar a acurácia da classificação digital de imagens LANDSAT para estimativa da área cultivada com soja e verificar a influência de aspectos regionais, tais como condições climáticas, de ocupação e de manejo, sobre a evolução temporal do índice de vegetação por diferença normalizada (NDVI), obtidos de imagens NOAA, visando o monitoramento da cultura da soja em projetos de previsão de safras. A estimativa de área cultivada com soja foi realizada através da classificação digital não supervisionada. Como verdade terrestre foram selecionadas 24 lavouras de soja, individualizadas na imagem com diferentes tamanhos e de diferentes regiões de uso e cobertura do solo, as quais foram quantificadas usando GPS de precisão topográfica. A verificação da acurácia da estimativa foi feita através de análise de regressão linear, sendo testada a significância do coeficiente de determinação. O monitoramento da cultura da soja foi realizada usando imagens decendiais de máximo NDVI. Nestas imagens, foram selecionadas 18 janelas amostrais, sendo extraídos os valores de NDVI e expressos na forma de perfis espectrais. Os resultados mostraram que a estimativa de área das lavouras cultivadas com soja, obtida através do processo de classificação digital não supervisionada em imagens LANDSAT, foi acurada e precisa para pequenas, médias e grandes lavouras, mostrando-se ser uma técnica eficiente para ser utilizada em projetos de previsão de safras de soja na região estudada. A evolução temporal do NDVI, obtida de imagens NOAA, apresentou sensibilidade quanto às diferenças de uso e cobertura do solo, demonstrando que as escalas espacial e temporal das imagens NOAA são adequadas para o acompanhamento em nível regional da evolução temporal da biomassa. Existe, ainda, potencial de uso de imagens NDVI para inferir sobre a área cultivada com soja em projetos de previsão de safras em escalas regionais, desde que a cultura seja predominante no pixel.
Resumo:
o monitoramento da expansão das áreas urbanas e a análise da sua interação com o meio físico têm sido um grande desafio para os técnicos de planejamento urbano. No Brasil, em especial, dada a velocidade com que o fenômeno se processa e graças a um crescimento desordenado das cidades nas últimas décadas, esses estudos, que envolvem um elevado número de informações, tem exigido decisões e diagnósticos urbanos cada vez mais rápidos. Esta dissertação propõe uma metodologia para o planejamento racional do uso do solo urbano através do emprego integrado de tecnologias recentes como Sistema de Informações Geográficas (SIG), Modelagem Numérica do Terreno (MNT) e Sensoriamento Remoto através de imagens orbitais. Para isso, são implementados no SIG desenvolvido pelo INPE dados provenientes de cartas topográficas, de mapas temáticos do meio físico e de imagens orbitais LANSAT/TM da região estudada. A partir desses dados iniciais são geradas, também num SIG, outras informações com objetivo de estudar a evolução da área urbana, identificar áreas com suscetibilidade preliminar à erosão laminar, áreas com restrição ao uso urbano e áreas de eventos perigosos e riscos. o trabalho apresenta inicialmente uma revisão bibliográfica sobre a aplicação de Sensoriamento Remoto, Modelagem Numérica do Terreno (MNT) e Sistema de Informações Geográficas (SIG) em estudos urbanos. Segue-se a conceituação e aspectos teóricos dessas três ferramentas básicas utilizadas. A metodologia propriamente dita traz os planos de informações originais e as suas respectivas fontes de informações, os processos de classificação de imagens digitais empregados e os modelos de cruzamentos desenvolvidos para um SIG. A área teste escolhida é a sub-bacia do Arroio Feijó, localizada na região metropolitana de Porto Alegre, na porção centro-leste do Estado do Rio Grande do Sul. A região é caracterizada por uma elevada densidade populacional, pela presença de áreas inundáveis e pela ocorrência de processos eroslVOS. Os resultados mostram que a metodologia proposta é adequada e eficiente para agilizar as atividades de planejamento urbano, subsidiando a elaboração de Planos Diretores de Desenvolvimento Integrado e orientando o crescimento das cidades para regiões mais favoráveis. Além disso, contribui para a prevenção de parcela dos riscos e problemas geotécnicos relacionados ao meio físico nas áreas urbanas.
Resumo:
Foi realizado um estudo sobre a situação ambiental numa micro bacia hidrográfica, utilizando o Sensoriamento Remoto e outras fontes como técnica de obtenção e tratamento dos dados. Com o recurso das classificações de imagens digitais, através de um procedimento não-supervisionado e de outro supervisionado, utilizando, respectivamente os métodos da Distância Euclidiana e da Máxima Verossimilhança, foi identificado o uso efetivo aplicado à terra na data de tomada da imagem, de cujo resultado obteve-se um documento cartográfico que representa o uso antrópico da área. Através da identificação das características físicas locais, com base na interpretação visual dos produtos do Sensoriamento Remoto, imagens TM e fotografias aéreas, e de outras fontes, foi feita a identificação do emprego mais adequado a ser aplicado à terra, a qual gerou um outro documento cartográfico representativo. Do cruzamento das informações contidas nas etapas anteriormente descritas, foi realizada uma análise ambiental da área em estudo, a qual também gerou um mapa temático que a representa.
Resumo:
A evapotranspiração (ET) abrange todos os processos que envolvem a mudança de fase líquida ou sólida para vapor de água. Globalmente, suas principais componentes são a evaporação nos oceanos, corpos d’água e solo e a transpiração pela cobertura vegetal. O conhecimento da ET da superfície terrestre para a atmosfera é muito importante para a resolução de inúmeras questões relacionadas aos recursos hídricos. Dentre essas questões, destacam-se planejamento de bacias hidrográficas e, em especial, o manejo da irrigação. Esse tipo de informação é igualmente relevante para estudos climáticos uma vez que, por meio da ET, ocorre redistribuição de umidade e calor da superfície para a atmosfera.As metodologias convencionais de estimativa da ET, em geral, apresentam muitas incertezas. Essas incertezas aumentam muito quando o interesse é o comportamento espacial da mesma. A única tecnologia que permite acessar esse tipo de informação, de forma eficiente e econômica, é o sensoriamento remoto. Por meio de dados derivados de imagens de satélite é possível calcular o balanço de energia de uma região e acessar as reais taxas de ET. A literatura internacional apresenta alguns modelos para estimar a ET por meio de sensoriamento remoto. A verificação dessas estimativas é feita por medidas dos termos do balanço de energia realizadas por sensores colocados em torres meteorológicas. Esse tipo de informação, no entanto, é de alto custo e de difícil aquisição. Após revisão de literatura, foram escolhidos os algoritmos SEBAL (Surface Energy Balance Algorithm for Land) e SSEBI (Simplified Surface Energy Balance Index). O primeiro foi adotado por ser um dos mais utilizados e o segundo pela sua simplicidade.Dessa maneira, a partir de 44 imagens de satélite, praticamente livres de cobertura de nuvens, do sensor AVHRR (Advanced Very High Resolution Radiometer), a bordo do satélite NOAA-14, e dados climatológicos de algumas estações, foram geradas séries de coberturas de ET real para o Estado do Rio Grande do Sul em nível diário, durante o ano de 1998. Para efeito de simplificação, na análise dos resultados foram escolhidas algumas áreas representativas das principais classes de cobertura do Estado: área cultivada, campo, área urbana, banhado, lagoa e floresta. Os resultados demonstraram que, para o SEBAL, asperdas médias anuais (mm ano-1) ocorrem, em ordem decrescente nas classes banhado (827), lagoa (732), floresta (686), área cultivada (458), campo (453) e área urbana (276). Para o S-SEBI, esta ordem é a seguinte: floresta (918), banhado (870), lagoa (669), área cultivada (425), campo (403) e área urbana (363). Ficou evidente que as classes com as menores influências antrópicas apresentaram as maiores taxas de ET. Outra observação feita é que, em média, as estimativas do S-SEBI superestimam a ET em relação ao SEBAL, na porção leste do Estado, e o oposto na porção oeste. Foi verificado, ainda, um eixo de decréscimo da ET na primeira metade do ano da porção noroeste para sudeste, e posterior crescimento na segunda metade do ano, em sentido oposto.As verificações foram feitas de forma indireta por meio de um balanço hídrico anual simplificado em algumas bacias hidrográficas do Estado, por meio de valores de ET real para a cultura do milho em algumas localidades do Estado e medidas de evaporação de tanque do tipo Classe A. Em geral, os resultados foram considerados coerentes, o que confere à metodologia utilizada um grande potencial de uso, uma vez que possibilita acessar a distribuição espacial da ET.
Resumo:
A análise tectono-estratigráfica da Bacia do Camaquã, uma sequência vulcanosedimentar do Neoproterozóico ao Eoproterozóico com depósitos de Cu (Au, Ag), Zn e Pb, é aqui apresentada com a utilização de ferramentas de sensoriamento remoto, gravimetria e perfilagem de poço. Nas imagens LANDSAT TM demarcou-se as concentrações de lineamentos junto as principais estruturas regionais e delimitou-se quatro domínios estruturais de acordo com a orientação dos trends dos lineamentos estruturais. Os perfis de poços que abrangem as formações Guaritas e Bom Jardim evidenciam eventos tectônicos com deformação rúptil e dúctil-ruptil, estabelecendo-se diferentes fácies tectonoestratigráficas de seqüências deposicionais (ambiente deltáico) e sequência deformacionais. Nos poços observa-se a variação da densidade com a profundidade entre poços, indicando a presença de duas aloformações de compactação distintas. Com base nos dados gravimétricos locais e regionais pode-se delimitar anomalias gravimétricas do embasamento, pacotes sedimentares de espessuras distintas em subsuperfície, com espessamento para NE, como também valores diferenciados para as principais unidades sedimentares da região estudada, bem como uma compartimentação escalonada da bacia do Camaquã. Ferramentas computacionais complementam a análise gravimétrica e de perfilagem geofísica, possibilitando a integração das técnicas já relacionadas e a formatação de dois perfis esquemáticos EW e SW-NE da bacia. Estes perfis auxiliam na visualização dos limites estruturais e formato da bacia, trazendo importantes informações para o modelo geológico da Bacia do Camaquã.