34 resultados para Redes neurais MLP
Resumo:
As técnicas que formam o campo da Descoberta de Conhecimento em Bases de Dados (DCBD) surgiram devido à necessidade de se tratar grandes volumes de dados. O processo completo de DCBD envolve um elevado grau de subjetividade e de trabalho não totalmente automatizado. Podemos dizer que a fase mais automatizada é a de Mineração de Dados (MD). Uma importante técnica para extração de conhecimentosa partir de dados é a Programação Lógica Indutiva (PLI), que se aplica a tarefas de classificação, induzindo conhecimento na forma da lógica de primeira ordem. A PLI tem demonstrado as vantagens de seu aparato de aprendizado em relação a outras abordagens, como por exemplo, aquelas baseadas em aprendizado proposicional Os seus algorítmos de aprendizado apresentam alta expressividade, porém sofrem com a grande complexidade de seus processos, principalmente o teste de corbertura das variáveis. Por outro lado, as Redes Neurais Artificiais (RNs) introduzem um ótimo desempenho devido à sua natureza paralela. às RNs é que geralmente são "caixas pretas", o que torna difícil a obtenção de um interpretação razoável da estrutura geral da rede na forma de construções lógicas de fácil compreensão Várias abordagens híbridas simbólico-conexionistas (por exemplo, o MNC MAC 890 , KBANN SHA 94 , TOW 94 e o sistema INSS OSO 98 têm sido apresentadas para lidar com este problema, permitindo o aprendizado de conhecimento simbólico através d euma RN. Entretanto, estas abordagens ainda lidam com representações atributo-valor. Neste trabalho é apresentado um modelo que combina a expressividade obtida pela PLI com o desempenho de uma rede neural: A FOLONET (First Order Neural Network).
Resumo:
A comparação de dados de mercado é o método mais empregado em avaliação de imóveis. Este método fundamenta-se na coleta, análise e modelagem de dados do mercado imobiliário. Porém os dados freqüentemente contêm erros e imprecisões, além das dificuldades de seleção de casos e atributos relevantes, problemas que em geral são solucionados subjetivamente. Os modelos hedônicos de preços têm sido empregados, associados com a análise de regressão múltipla, mas existem alguns problemas que afetam a precisão das estimativas. Esta Tese investigou a utilização de técnicas alternativas para desenvolver as funções de preparação dos dados e desenvolvimento de modelos preditivos, explorando as áreas de descobrimento de conhecimento e inteligência artificial. Foi proposta uma nova abordagem para as avaliações, consistindo da formação de uma base de dados, ampla e previamente preparada, com a aplicação de um conjunto de técnicas para seleção de casos e para geração de modelos preditivos. Na fase de preparação dos dados foram utilizados as técnicas de regressão e redes neurais para a seleção de informação relevante, e o algoritmo de vizinhança próxima para estimação de valores para dados com erros ou omissões. O desenvolvimento de modelos preditivos incluiu as técnicas de regressão com superficies de resposta, modelos aditivos generalizados ajustados com algoritmos genéticos, regras extraídas de redes neurais usando lógica difusa e sistemas de regras difusas obtidos com algoritmos genéticos, os quais foram comparados com a abordagem tradicional de regressão múltipla Esta abordagem foi testada através do desenvolvimento de um estudo empírico, utilizando dados fornecidos pela Prefeitura Municipal de Porto Alegre. Foram desenvolvidos três formatos de avaliação, com modelos para análise de mercado, avaliação em massa e avaliação individual. Os resultados indicaram o aperfeiçoamento da base de dados na fase de preparação e o equilíbrio das técnicas preditivas, com um pequeno incremento de precisão, em relação à regressão múltipla.Os modelos foram similares, em termos de formato e precisão, com o melhor desempenho sendo atingido com os sistemas de regras difusas.
Resumo:
Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos em diferentes tarefas. Estes sistemas são capazes de reconhecer padrões previamente ensinados em uma imagem complexa. A leitura automática é uma das mais atraentes tarefas nesta área [1], sendo que uma máquina com esta capacidade pode reconhecer objetos que possuam caracteres em sua identificação. Na área de trânsito, a identificação de veículos através da leitura de sua placa de licença vem conquistando cada vez mais espaço. No início dos anos cinqüenta, este conceito era usado para estudar o tempo de duração de viagens entre origem e destino. Os primeiros métodos utilizados eram baseados em observadores que anotavam as placas dos veículos e os tempos correspondentes em um papel ou fita gravada. As placas eram manualmente comparadas mais tarde, e os tempos de viagem calculados [2]. O crescente avanço tecnológico tem aumentado substancialmente a precisão e facilidade desta técnica permitindo sua utilização na identificação de veículos infratores e em situação irregular, e no controle de pedágios e estacionamentos pagos Este trabalho envolve o estudo de diversas técnicas de processamento e análise de imagem culminando no desenvolvimento de um sistema capaz de localizar e reconhecer os caracteres contidos numa placa de licença de um veículo. A imagem é previamente analisada por um algoritmo de procura por variações tonais padronizadas de maneira a restringir a área de análise do algoritmo principal do sistema. Este, por sua vez, binariza a imagem através de um algoritmo adaptativo e busca elementos que possuam dimensões próximas às dimensões esperadas dos caracteres da placa. O sistema busca encontrar uma seqüência de caracteres de dimensões aproximadamente iguais e para isso, varia um valor de limiar no processo de binarização conferindo maior robustez ao algoritmo. Uma vez encontrado um grupo de dígitos que satisfaçam alguns critérios prédefinidos, os caracteres são redimensionados e apresentados a duas redes neurais, uma para as letras e outra para os números.
Resumo:
Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados.
Resumo:
A filtragem de imagens visando a redução do ruído é uma tarefa muito importante em processamento de imagens, e encontra diversas aplicações. Para que a filtração seja eficiente, ela deve atenuar apenas o ruído na imagem, sem afetar estruturas importantes, como as bordas. Há na literatura uma grande variedade de técnicas propostas para filçtragem de imagens com preservação de bordas, com as mais variadas abordagens, deentrte as quais podem ser citadas a convolução com máscaras, modelos probabilísticos, redes neurais, minimização de funcionais e equações diferenciais parciais. A transformada wavelet é uma ferramenta matemática que permite a decomposição de sinais e imagens em múltiplas resoluções. Essa decomposição é chamada de representação em wavelets, e pode ser calculada atrravés de um algorítmo piramidal baseado em convoluções com filtros passa-bandas e passa-baixas. Com essa transformada, as bordas podem ser calculadas em múltiplas resoluções. Além disso, como filtros passa-baixas são utilizados na decomposição, a atenuação do ruído é um processo intrínseco à transformada. Várias técnicas baseadas na transformada wavelet têm sido propostas nos últimos anos, com resultados promissores. Essas técnicas exploram várias características da transformada wavelet, tais como a magnitude de coeficientes e sua evolução ao longo das escalas. Neste trabalho, essas características da transformada wavelet são exploradas para a obtenção de novas técnicas de filtragem com preservação das bordas.
Resumo:
O presente trabalho apresenta o desenvolvimento de um estudo da extração de óleo vegetal em instalações industriais do tipo Rotocell. O extrator tem forma cilíndrica e possui um eixo principal no qual estão fixos vagões que transportam os sólidos através do extrator, e, abaixo desses existem reservatórios responsáveis pelo recebimento da micela. Acima dos vagões há seções de distribuição de micela que é despejada sobre os sólidos dos vagões, que extrai o óleo. Possui também seções de carregamento e drenagem. Um modelo físico-matemático e um programa para simular a operação do extrator foram desenvolvidos considerando os seguintes fenômenos: difusão de óleo pela micela; transferência de óleo entre as fases bulk e poro; variação da massa específica e viscosidade da micela; os processos nas seções de drenagem e de carregamento. Na forma final, o modelo acoplado apresenta-se em termos de redes neurais artificiais, que possibilita operar com tempos discretos e contínuos, permitindo a simulação numérica deste extrator industrial, o treinamento favorável da rede, sua identificação, e o acompanhamento em tempo real. Foram determinadas características da matéria-prima através de um trabalho experimental em laboratório. Através dos resultados obteve-se a validação do modelo por meios teóricos e experimentais Os resultados teóricos foram comparados com os dados experimentais e com cálculos feitos através do método de estágios ideais. As simulações numéricas revelam propriedades do campo de extração para o regime transiente com distribuição uniforme e regime transiente industrial, onde verifica-se que o modelo descreve corretamente o comportamento real do campo de percolação do extrator. Também foram realizadas simulações numéricas com o objetivo de avaliar as principais características do extrator em função da sua geometria e características da matéria-prima, variando a altura e o número de vagões do extrator verificou-se que é possível simular o comportamento do extrator para diferentes formas e tipo de qualidades da matéria-prima. Foram feitas simulações utilizando um solvente alternativo(álcool) e mudando parâmetros do extrator, onde observou-se que o solvente exige alterações na dimensão do extrator.
Resumo:
As tarefas de visão computacional incentivam uma significativa parte da pesquisa em todas as áreas científicas e industriais, entre as quais, cita-se a área voltada para o desenvolvimento de arquiteturas de computadores. A visão computacional é considerada um dos problemas mais desafiadores para a computação de alto desempenho, pois esta requer um grande desempenho, bem como um alto grau de flexibilidade. A flexibilidade é necessária pois a visão computacional abrange aplicações em que há diferentes tarefas a serem realizadas com diferentes necessidades de desempenho. Esta flexibilidade é particularmente importante em sistemas destinados a atuar como ambientes experimentais para novas técnicas de processamento visual ou para a prototipação de novas aplicações. Computação configurável tem demonstrado, por meio de exemplos implementados pela comunidade científica, fornecer uma boa relação entre alto desempenho e flexibilidade necessária para a implementação de diferentes técnicas utilizadas na área de visão computacional. Contudo, poucos esforços de pesquisa têm sido realizados na concepção de sistemas completos visando a solução de um problema de visão computacional, incluindo ambos os requisitos de software e de hardware. O principal objetivo deste trabalho é mostrar que as técnicas e tecnologias disponíveis na área de computação configurável podem ser empregadas para a concepção de um sistema capaz de implementar um grande número de aplicações da área de visão computacional na pesquisa e no ambiente industrial. Entretanto, não é escopo deste trabalho implementar um sistema de computação que seja suficiente para abordar os requerimentos necessários para todas as aplicações em visão computacional, mas os métodos aqui introduzidos podem ser utilizados como uma base geral de implementação de várias tarefas de visão computacional. Este trabalho utiliza ambientes que permitem implementações conjuntas de hardware e software, pois os mesmos facilitam a validação das técnicas aqui apresentadas, por meio da implementação de um estudo de caso, sendo parte deste estudo de caso implementado em software e outra parte em hardware.
Resumo:
O presente trabalho implementa um método computacional semi-automático para obter medidas de estruturas cardíacas de fetos humanos através do processamento de imagens de ultra-som. Essas imagens são utilizadas na avaliação cardíaca pré-natal, permitindo que os médicos diagnostiquem problemas antes mesmo do nascimento. A dissertação é parte de um projeto desenvolvido no Instituto de Informática da Universidade Federal do Rio Grande do Sul, denominado SEGIME (Segmentação de Imagens Médicas). Neste projeto, está sendo desenvolvida uma ferramenta computacional para auxiliar na análise de exames ecocardiográficos fetais com o apoio da equipe de Cardiologia Fetal do Instituto de Cardiologia do Rio Grande do Sul. O processamento de cada imagem é realizado por etapas, divididas em: aquisição, pré-processamento, segmentação e obtenção das medidas. A aquisição das imagens é realizada por especialistas do Instituto de Cardiologia. No pré-processamento, é extraída a região de interesse para a obtenção das medidas e a imagem é filtrada para a extração do ruído característico das imagens de ultra-som. A segmentação das imagens é realizada através de redes neurais artificiais, sendo que a rede neural utilizada é conhecida como Mapa Auto-organizável de Kohonen. Ao final do processo de segmentação, a imagem está pronta para a obtenção das medidas. A técnica desenvolvida nesta dissertação para obtenção das medidas foi baseada nos exames realizados pelos especialistas na extração manual de medidas. Essa técnica consiste na análise da linha referente à estrutura de interesse onde serão detectadas as bordas. Para o início das medidas, é necessário que o usuário indique o ponto inicial sobre uma borda da estrutura. Depois de encontradas as bordas, através da análise da linha, a medida é definida pela soma dos pixels entre os dois pontos de bordas. Foram realizados testes com quatro estruturas cardíacas fetais: a espessura do septo interventricular, o diâmetro do ventrículo esquerdo, a excursão do septum primum para o interior do átrio esquerdo e o diâmetro do átrio esquerdo. Os resultados obtidos pelo método foram avaliados através da comparação com resultados de referência obtidos por especialistas. Nessa avaliação observou-se que a variação foi regular e dentro dos limites aceitáveis, normalmente obtida como variação entre especialistas. Desta forma, um médico não especializado em cardiologia fetal poderia usar esses resultados em um diagnóstico preliminar.
Resumo:
Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al(1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes.
Resumo:
Este trabalho apresenta e discute uma estratégia e discute uma estratégia inédita para o problema de exploração e mapeamento de ambientes desconhecidos usandoo robô NOMAD 200. Esta estratégia tem como base a solução numéricqa de problemas de valores de contorno (PVC) e corresponde ao núcleo da arquitetura de controle do robô. Esta arquitetura é similar à arquitetura blackboard, comumente conhecida no campo da Inteligência Artificial, e é responsável pelo controle e gerenciamento das tarefas realizadas pelo robô através de um programa cleinte. Estas tarefas podem ser a exploração e o mapeamento de um ambiente desconhecido, o planejamento de caminhos baseado em um mapa previamente conhecido ou localização de um objeto no ambiente. Uma características marcante e importante é que embora estas tarefas pareçam diferentes, elas têm em comum o mesmo princípio: solução de problemas de valores de contorno. Para dar sustentabilidade a nossa proposta, a validamos através de inúmeros experimentos, realizados e simulação e diretamente no robô NOMAD 200, em diversos tipos de ambientes internos. Os ambientes testados variam desde labirintos formados por paredes ortogonais entre si até ambientes esparsos. Juntamente com isso, introduzimos ao longo do desenvolvimento desta tese uma série de melhorias que lidam com aspectos relacionados ao tempo de processamento do campo potencial oriundo do PVC e os ruídos inseridos na leitura dos sensores. Além disso, apresentamos um conjunto de idéias para trabalhos futuros.
Resumo:
A presente tese apresenta a concepção de uma rede neural oscilatória e sua realização em arquitetura maciçamente paralela, a qual é adequada à implementação de chips de visão digitais para segmentação de imagens. A rede proposta, em sua versão final, foi denominada ONNIS-GI (Oscillatory Neural Network for Image Segmentation with Global Inhibition) e foi inspirada em uma rede denominada LEGION (Locally Excitatory Globally Inhibitory Oscillator Network), também de concepção recente. Inicialmente, é apresentada uma introdução aos procedimentos de segmentação de imagens, cujo objetivo é o de situar e enfatizar a importância do tema abordado dentro de um contexto abrangente, o qual inclui aplicações de visão artificial em geral. Outro aspecto abordado diz respeito à utilização de redes neurais artificiais em segmentação de imagens, enfatizando as denominadas redes neurais oscilatórias, as quais têm apresentado resultados estimulantes nesta área. A implementação de chips de visão, integrando sensores de imagens e redes maciçamente paralelas de processadores, é também abordada no texto, ressaltando o objetivo prático da nova rede neural proposta. No estudo da rede LEGION, são apresentados resultados de aplicações originais desenvolvidas em segmentação de imagens, nos quais é verificada sua propriedade de separação temporal dos segmentos. A versão contínua da rede, um arranjo paralelo de neurônios baseados em equações diferenciais, apresenta elevada complexidade computacional para implementação em hardware digital e muitos parâmetros, com procedimento de ajuste pouco prático. Por outro lado, sua arquitetura maciçamente paralela apresenta-se particularmente adequada à implementação de chips de visão analógicos com capacidade de segmentação de imagens. Com base nos bons resultados obtidos nas aplicações desenvolvidas, é proposta uma nova rede neural, em duas versões, ONNIS e ONNIS-GI, as quais suplantam a rede LEGION em diversos aspectos relativos à implementação prática. A estrutura dos elementos de processamento das duas versões da rede, sua implementação em arquitetura maciçamente paralela e resultados de simulações e implementações em FPGA são apresentados, demonstrando a viabilidade da proposta. Como resultado final, conclui-se que a rede ONNIS-GI apresenta maior apelo de ordem prática, sendo uma abordagem inovadora e promissora na solução de problemas de segmentação de imagens, possuindo capacidade para separar temporalmente os segmentos encontrados e facilitando a posterior identificação dos mesmos. Sob o ponto de vista prático, a nova rede pode ser utilizada para implementar chips de visão digitais com arquitetura maciçamente paralela, explorando a velocidade de tais topologias e apresentando também flexibilidade para implementação de procedimentos de segmentação de imagens mais sofisticados.
Resumo:
Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas, deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuro-evolução é um dos métodos de aprendizado por reforço mais proeminentes. Em vista disto, neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Mais detalhadamente, desenvolveu-se uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração, além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Um ambiente de simulação foi desenvolvido e uma série de experimentos realizados com o objetivo de avaliar o modelo proposto e identificar quais os melhores valores para os diversos parâmetros do modelo. O modelo proposto foi aplicado no domínio das tarefas de perseguição-evasão.
Resumo:
Nesta tese estudamos os efeitos de diluição simétrica gradual das conexões entre neurônios e de ruído sináptico sobre a habilidade de categorização de padrões no modelo de Hopfield de redes neurais, mediante a teoria de campo médio com simetria de réplicas e simulações numéricas. Utilizamos generalizações da regra de aprendizagem de Hebb, para uma estrutura hierárquica de padrões correlacionados em dois níveis, representando os ancestrais (conceitos) e descendentes (exemplos dos conceitos). A categorização consiste no reconhecimento dos conceitos por uma rede treinada unicamente com exemplos dos conceitos. Para a rede completamente conexa, obtivemos os diagramas de fases e as curvas de categorização para vários níveis de ruído sináptico. Observamos dois comportamentos distintos dependendo do parâmetro de armazenamento. A habilidade de categorização é favorecida pelo ruído sináptico para um número finito de conceitos, enquanto que para um número macroscópico de conceitos este favorecimento não é observado. Entretanto a performance da rede permanece robusta contra o ruído sináptico. No problema de diluição simétrica consideramos apenas um número macroscópico de conceitos, cada um com um número finito de exemplos. Os diagramas de fases obtidos exibem fases de categorização, de vidro de spin e paramagnética, bem como a dependência dos parâmetros de ordem com o número de exemplos, a correlação entre exemplos e conceitos, os ruídos sináptico e estocástico, e a conectividade. A diluição favorece consideravelmente a categorização, particularmente no limite de diluição extrema.
Resumo:
A lactação é um processo fisiológico complexo que ainda não foi compreendido na sua totalidade. Inúmeros fatores intervêm na síntese e secreção do leite, sendo os mais importantes a nutrição e o metabolismo endógeno dos nutrientes. A qualidade do leite é valorizada tanto pela sua composição química, como pelo conteúdo de células somáticas. No entanto, visando a comercialização do leite, as maiores mudanças e melhoras na qualidade podem ser atingidas através da manipulação da dieta dos animais, em especial em vacas leiteiras de alta produção. Avaliar os processos de absorção de alimentos, bem como o metabolismo catabólico e anabólico direcionado para a síntese do leite, têm sido uma grande preocupação na pesquisa de nutrição e bioquímica da produção animal. O principal objetivo da presente pesquisa foi gerar modelos matemáticos que pudessem explicar a participação de diferentes metabólitos sobre a composição química do leite. Neste intuito foram coletadas amostras de fluído ruminal, sangue, urina e leite de 140 vacas da raça Holandesa nas primeiras semanas de lactação e mantidas sob sistema semi-intensivo de produção e dieta controlada. Os animais foram selecionados de sistemas de produção no ecossistema do Planalto Médio de Rio Grande do Sul e foram amostrados em dois períodos climáticos críticos. No fluido ruminal foram avaliados o pH e o tempo de redução do azul de metileno. No sangue foram determinados os metabólitos: glicose, colesterol, β-hidroxibutirato (BHB), triglicerídeos, fructosamina, ácidos graxos não esterificados (NEFA), proteínas totais, albumina, globulina, uréia, creatinina, cálcio, fósforo e magnésio. As enzimas: aspartato amino transferase (AST), gama glutamil transferase (GGT) e creatina kinase (CK). Os hormônios: cortisol, insulina, triiodotironina (T3), tiroxina (T4), e leptina. Foi efetuado hemograma, para conhecer: hematócrito, hemoglobina, e contagem total e diferencial de células brancas. Na urina foram dosados: corpos cetônicos, pH e densidade. No leite foi determinada: proteína, gordura, lactose, sólidos totais, sólidos não gordurosos, contagem de células somáticas e uréia. Para a determinação de cada um dos metabólitos ou compostos foram usadas técnicas específicas validadas internacionalmente. Os diferentes valores obtidos constituíram os parâmetros básicos de entrada para a construção dos diversos modelos matemáticos executados para predizer a composição do leite. Mediante procedimentos de regressão linear múltipla algoritmo Stepwise, procedimentos de correlação linear simples de Pearson e procedimentos de análise computacional através de redes neurais, foram gerados diferentes modelos para identificar os parâmetros endógenos de maior relevância na predição dos diferentes componentes do leite. A parametrização das principais rotas bioquímicas, do controle endócrino, do estado de funcionamento hepático, da dinâmica ruminal e da excreção de corpos cetônicos aportou informação suficiente para predizer com diferente grau de precisão o conteúdo dos diferentes sólidos no leite. O presente trabalho é apresentado na forma de quatro artigos correspondentes aos parâmetros energéticos, de controle endócrino, modelagem matemática linear múltipla e predição através de Artificial Neural Networks (ANN).
Resumo:
Este trabalho tem como objetivo o levantamento e análise de fatores intervenientes na capacidade de processamento de veículos em cabines de praças de pedágio com o recolhimento manual de tarifas. Buscando o entendimento de como estes fatores interferem nos tempos de atendimento nas cabines foi realizada uma análise estatística e posterior modelagem, que utilizou redes neurais artificiais. Redes neurais artificiais são úteis no entendimento de problemas com alto grau de complexidade, que agregam diversas variáveis de entrada com relações não-lineares entre si. As variáveis de entrada escolhidas para a modelagem foram forma de pagamento, intensidade de fluxo, valor das tarifas e classes de veículos. A variável de saída foi o tempo de atendimento nas cabines de cobrança de pedágios. Foram obtidos três modelos que buscaram refletir a variação dos tempos de atendimento para um mesmo conjunto de dados de entrada: Modelo de Tempos Mínimos de Atendimento; Modelo de 85° Percentil de Tempos de Atendimento, e; Modelo de Tempos Máximos de Atendimento. As análises de sensibilidade dos modelos indicaram que tempos de atendimento são fortemente influenciados pelo fluxo de veículos nas praças. Quanto mais intenso o fluxo de veículos, tempos mínimos de atendimento tendem a sofrer leve aumento, indicando pequena perda de rendimento do processo. Perda de rendimento pode ser resultado de (i) necessidade de digitação das placas de licença dos veículos no sistema operacional das praças-dificuldade de visualização das mesmas em situação de filas, e (ii) desgaste físico dos arrecadadores. O desgaste físico dos arrecadadores também se apresenta como provável causa para o aumento de tempos mínimos de atendimento para fluxos altos. Quanto mais intenso o fluxo de veículos, menores são os tempos máximos de atendimento. Quanto maior o fluxo de veículos nas praças, as modelagens indicam uma maior estabilidade do sistema com relação ao processamento de veículos.