59 resultados para Equações diferenciais ordinárias. Problema de valor inicial. Existência e unicidade


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho é resolvido o problema da minimização do volume de estruturas bidimensionais contínuas submetidas a restrições sobre a flexibilidade (trabalho das forças externas) e sobre as tensões, utilizando a técnica chamada otimização topológica, que visa encontrar a melhor distribuição de material dentro de um domínio de projeto pré-estabelecido. As equações de equilíbrio são resolvidas através do método dos elementos finitos, discretizando a geometria e aproximando o campo de deslocamentos. Dessa forma, essas equações diferenciais são transformadas em um sistema de equações lineares, obtendo como resposta os deslocamentos nodais de cada elemento. A distribuição de material é discretizada como uma densidade fictícia constante por elemento finito. Esta densidade define um material isotrópico poroso de uma seqüência pré-estabelecida (SIMP). A otimização é feita através da Programação Linear Seqüencial. Para tal, a função objetivo e as restrições são sucessivamente linearizadas por expansão em Série de Taylor. A análise de sensibilidade para a restrição de flexibilidade é resolvida utilizando o cálculo da sensibilidade analítico adaptado para elementos finitos de elasticidade plana. Quando as restrições consideradas são as tensões, o problema torna-se mais complexo. Diferente da flexibilidade, que é uma restrição global, cada elemento finito deve ter sua tensão controlada. A tensão de Von Mises é o critério de falha considerado, cuja sensibilidade foi calculada de acordo com a metodologia empregada por Duysinx e Bendsøe [Duysinx e Bendsøe, 1998] Problemas como a instabilidade de tabuleiro e dependência da malha sempre aparecem na otimização topológica de estruturas contínuas. A fim de minimizar seus efeitos, um filtro de vizinhança foi implementado, restringindo a variação da densidade entre elementos adjacentes. Restrições sobre as tensões causam um problema adicional, conhecido como singularidade das tensões, fazendo com que os algoritmos não convirjam para o mínimo global. Para contornar essa situação, é empregada uma técnica matemática de perturbação visando modificar o espaço onde se encontra a solução, de forma que o mínimo global possa ser encontrado. Esse método desenvolvido por Cheng e Guo [Cheng e Guo, 1997] é conhecido por relaxação-ε e foi implementado nesse trabalho.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho tem por objetivo estudar a regularidade de soluções de Equações Diferenciais Parciais Elípticas da forma Lu = f, para f 2 Lp(­), onde p > 1. Para isto, usamos a Decomposição de Calderon-Zygmund e um resultado que é consequência deste, o Teorema da Interpolação de Marcinkiewicz. Além disso, usando quocientes-diferença provamos a regularidade das soluções para o caso p = 2 e L = ¡¢ de uma forma alternativa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fenômenos naturais, tecnológicos e industriais podem, em geral, ser modelados de modo acurado através de equações diferenciais parciais, definidas sobre domínios contínuos que necessitam ser discretizados para serem resolvidos. Dependendo do esquema de discretização utilizado, pode-se gerar sistemas de equações lineares. Esses sistemas são, de modo geral, esparsos e de grande porte, onde as incógnitas podem ser da ordem de milhares, ou até mesmo de milhões. Levando em consideração essas características, o emprego de métodos iterativos é o mais apropriado para a resolução dos sistemas gerados, devido principalmente a sua potencialidade quanto à otimização de armazenamento e eficiência computacional. Uma forma de incrementar o desempenho dos métodos iterativos é empregar uma técnica multigrid. Multigrid são uma classe de métodos que resolvem eficientemente um grande conjunto de equações algébricas através da aceleração da convergência de métodos iterativos. Considerando que a resolução de sistemas de equações de problemas realísticos pode requerer grande capacidade de processamento e de armazenamento, torna-se imprescindível o uso de ambientes computacionais de alto desempenho. Uma das abordagens encontradas na literatura técnica para a resolução de sistemas de equações em paralelo é aquela que emprega métodos de decomposição de domínio (MDDs). Os MDDs são baseados no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções obtidas em cada um dos subdomínios Assim, neste trabalho são disponibilizados diferentes métodos de resolução paralela baseado em decomposição de domínio, utilizando técnicas multigrid para a aceleração da solução de sistemas de equações lineares. Para cada método, são apresentados dois estudos de caso visando a validação das implementações. Os estudos de caso abordados são o problema da difusão de calor e o modelo de hidrodinâmica do modelo UnHIDRA. Os métodos implementados mostraram-se altamente paralelizáveis, apresentando bons ganhos de desempenho. Os métodos multigrid mostraram-se eficiente na aceleração dos métodos iterativos, já que métodos que utilizaram esta técnica apresentaram desempenho superior aos métodos que não utilizaram nenhum método de aceleração.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho apresenta um novo esquema de criptografia de chave pública baseado no emprego de funções para representar as mensagens original e cifrada. No esquema proposto – denominado Rafaella -, o processo de cifração consiste na aplicação de um deslocamento no argumento da função que representa a mensagem, de modo que se f(x) descreve a mensagem original, então f(x+z) representa a respectiva mensagem cifrada. O deslocamento z representa um número complexo que, no esquema proposto, representa a forma das chaves privadas dos participantes. A dificuldade da resolução do problema inversos concentra-se na obtenção das partes real e imaginária do deslocamento z, que pode ser efetuada através de método de força bruta, ou da resolução de um problema de contorno. A segunda alternativa envolve a resolução de equações diferenciais. Dentre os métodos disponíveis para a resolução de equações diferenciais, o emprego dos chamados grupos de Lie constitui, via de regra, a estratégia mais apropriada para a obtenção de soluções analíticas, que demandam menor tempo de processamento do que as formulações numéricas. Mesmo assim, a solução obtida através da utilização dos grupos de Lie requer elevado número de operações simbólicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O comportamento dinâmico de um sistema é tradicionalmente descrito por um modelo, em geral associado a um conjunto de equações diferenciais ou de equações de diferenças, onde as variáveis representam grandezas físicas. Sistemas complexos, principalmente na indústria de processos, incorporam elementos com comportamento dinâmico lógico, tais como atuadores e sensores ON-OFF (estados aberto/fechado) ou proposições lógicas (estados verdadeiro/falso). Estes sistemas são denominados “Sistemas Híbridos”, “Sistemas Mistos Lógicos-dinâmicos” ou, simplesmente, “Sistemas Mistos”. Neste trabalho, são apresentadas técnicas que, associando variáveis lógicas a estes elementos, e mediante a incorporação de restrições sobre as variáveis, permitem obter um modelo matemático do sistema misto. Neste caso, técnicas clássicas de controle não permitem a incorporação destas novas variáves e restrições. Como opção de controle de sistemas mistos, é então proposta e estudada uma técnica de controle preditivo baseado em modelo. São apresentados tanto a formulação teórica do problema de controle, quanto exemplos e simulações bem como um estudo de caso de sua aplicação sobre um sistema de equalização de uma planta de tratamento de efluentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho visa o uso da função de Green de valor inicial no ajuste geostrófico e do método Semi-Lagrangeano na integração de um modelo acoplado oceano-atmosfera descrito pelas equações de águas rasas. O ajuste geostrófico é considerado atravées de perturbações na pressão e do vento. No caso de sistemas sem rotação, é discutida a relação da equação hidrostática com ondas longas não-dispersivas. Com rotação, a conservação da vorticidade potencial permite escolher a elevação correspondente a um estado de equilíbrio geostrófico. O sistema de equações de águas rasas é desacoplado em equações de Klein-Gordon com valores iniciais e termos não-homogêneos acoplados. A resposta dinâmica formada pela resposta transiente e a resposta forçada é obtida para uma perturbação inicial da elevação. A ação do vento como forçante nas equações de momento 2D, através do transporte de Eckman, conduz a uma equação de águas rasas forçada. Uma decomposição da resposta forçada é realizada com uma resposta permanente, que satisfaz a equação de Helmholtz , e com o uso da base dinâmica gerada pela resposta impulso. Um modelo hidrodinâmico 3D introduzido por Casulli e governado por equações não-lineares de águas rasas é integrado na vertical para a obtenção de um modelo 2D. Com isto, as condições de contorno devido a tensão do vento e a fricção devido a topografia do fundo, transformam-se em forçantes do modelo. O modelo foi integrado com um método semi-implícito em diferenças finitas, utilizando-se o método Semi-Lagrangeano para a parte advectiva. Simulações simbólicas foram realizadas para o ajuste geostrófico devido a perturbações de duração infinita e finita para a elevação e para o efeito da tensão do vento. Foram realizadas simulações numéricas para variadas geometrias, em particular a Baia de Guanabara e a Lagoa do Patos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundamentalmente, o presente trabalho faz uma análise elástica linear de pontes ou vigas curvas assimétricas de seção transversal aberta e de parede fina, com propriedades físicas, geométricas e raio de curvatura constantes ao longo do eixo baricêntrico. Para tanto, utilizaram-se as equações diferenciais de VLASOV considerando o acoplamento entre as deformações nas direções vertical, transversal, axial de torcão nal. Na solução do sistema de quatro equações com derivadas parciais foi utilizado um apropriado método numérico de integração (Diferenças Finitas Centrais). A análise divide-se, basicamente, em dois tipos: análise DINÂMICA e ESTATICA. Ambas são utilizadas também na determinação do coeficiente de impacto (C.M.D.). A primeira refere-se tanto na determinação das características dinâmicas básicas (frequências naturais e respectivos modos de vibração), como também na determinação da resposta dinâmica da viga, em tensões e deformações, para cargas móveis arbitrárias. Vigas com qualquer combinação das condições de contorno, incluindo bordos rotulados e engastados nas três direções de flexão e na torção, são consideradas. 0s resultados da análise teórica, obtidos pela aplicação de programas computacionais implementados em microcomputador (análise estática) e no computador B-6700 (análise dinâmica), são comparados tanto com os da bibliografia técnica como também com resultados experimentais, apresentando boa correlação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apresentar um modelo para simular um sistema de armazenamento de calor no solo em estufas para plasticultura é o objetivo do presente trabalho. O sistema consiste num feixe de tubos enterrados no solo. A convecção forçada de ar no seu interior realiza a troca térmica necessária para manter as estufas sob faixas desejadas de temperatura. O objetivo do modelo é investigar os efeitos no calor armazenado e a influência das variáveis, tais como diâmetro, comprimento, espaçamento entre os tubos e a velocidade de ar no canal provocam no sistema. O solo é tratado como um meio difusivo e avalia-se a contribuição do termo de condensação e evaporação da água contida no ar em escoamento nos tubos. A equação da energia é resolvida para o solo e para o ar. Os tubos de seção transversal circular são modelados como tubos de seção transversal quadrada com o objetivo de que as simulações possam ser processadas em coordenadas cartesianas. O programa resolve situações tridimensionais, transientes e emprega o Método dos Volumes Finitos para integrar as equações diferenciais governantes. O modelo original é baseado no modelo de Gauthier et al., 1997, tendo sido os resultados do mesmo foram usados para a validação do presente estudo. Um circuito de água quente é também projetado e apresentado para o aquecimento das estufas. A água circula através de mangueiras sobre o solo e é aquecida por um sistema de queimadores a gás liqüefeito de petróleo ou óleo combustível, transferindo assim calor para o interior da mesma. O projeto de aquecimento foi realizado através de um programa de parceria entre a Ufrgs, Sebrae, Fapergs e a Agropecuária Clarice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é a obtenção de uma técnica para a modelagem otimizada de corpos submetidos a fluxos de alta velocidade, como aerofólios em escoamentos transônicos e outras geometrias aerodinâmicas. A técnica é desenvolvida através de expansões em séries de Fourier para um conjunto de equações diferenciais com interrelação com as condições de contorno, sendo uma equação para a parte superior e outra para a parte inferior do aerofólio. O método de integração temporal empregado baseia-se no esquema explícito de Runge-Kutta de 5 estágios para as equações da quantidade de movimento e na relação de estado para a pressão. Para a aproximação espacial adota-se um esquema em volumes finitos no arranjo co-localizado em diferenças centrais. Utiliza-se dissipação artificial para amortecer as frequências de alta ordem do erro na solução das equações linearizadas. A obra apresenta a solução de escoamentos bi e tridimensionais de fluidos compressíveis transônicos em torno de perfis aerodinâmicos. Os testes num´ericos são realizados para as geometrias do NACA 0012 e 0009 e asas tridimensionais usando as equações de Euler, para número de Mach igual a 0.8 e ® = 0o. Os resultados encontrados comparam favoravelmente com os dados experimentais e numéricos disponíveis na literatura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ciência moderna apresentou significativo avanço a partir do desenvolvimento da análise diferencial. A transformação de equações diferenciais de alta ordem em sistemas de equações algébricas foi possível através do desenvolvimento de métodos numéricos, constituindo este, outro grande avanço. Dentro desses pode-se destacar os métodos de diferenças finitas, dos elementos finitos, dos elementos discretos e mais recentemente, os elementos de contorno. Neste trabalho, faz-se uma contribuição ao desenvolvimento do Método dos Elementos Discretos para aplicações na Mecânica do Contínuo, na Mecânica da Fratura, assim como na determinação do dano em elementos estruturais submetidos a cargas. Neste método, a discretização espacial no modelo se realiza mediante um conjunto de massas ligadas entre se por forças materializadas como um arranjo de barras de treliça com rigidez equivalente ao contínuo que se quer representar, e mediante um esquema de integração explícita, se realiza a integração das equações de movimento no tempo. Verifica-se a validade e a capacidade do método em predizer o efeito de tamanho em elementos de concreto e concreto armado, obtendo-se uma excelente correlação com ensaios encontrados na literatura técnica, além de importantes conclusões a respeito da aplicação de cargas estáticas e dinâmicas, tanto em padrões de fissuração ou ruptura, quanto aos valores limites de resistência dos materiais ou cargas aplicadas, dando-se importância na geração aleatória das propriedades dos materiais mediante o uso do Método de Representação Espectral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A filtragem de imagens visando a redução do ruído é uma tarefa muito importante em processamento de imagens, e encontra diversas aplicações. Para que a filtração seja eficiente, ela deve atenuar apenas o ruído na imagem, sem afetar estruturas importantes, como as bordas. Há na literatura uma grande variedade de técnicas propostas para filçtragem de imagens com preservação de bordas, com as mais variadas abordagens, deentrte as quais podem ser citadas a convolução com máscaras, modelos probabilísticos, redes neurais, minimização de funcionais e equações diferenciais parciais. A transformada wavelet é uma ferramenta matemática que permite a decomposição de sinais e imagens em múltiplas resoluções. Essa decomposição é chamada de representação em wavelets, e pode ser calculada atrravés de um algorítmo piramidal baseado em convoluções com filtros passa-bandas e passa-baixas. Com essa transformada, as bordas podem ser calculadas em múltiplas resoluções. Além disso, como filtros passa-baixas são utilizados na decomposição, a atenuação do ruído é um processo intrínseco à transformada. Várias técnicas baseadas na transformada wavelet têm sido propostas nos últimos anos, com resultados promissores. Essas técnicas exploram várias características da transformada wavelet, tais como a magnitude de coeficientes e sua evolução ao longo das escalas. Neste trabalho, essas características da transformada wavelet são exploradas para a obtenção de novas técnicas de filtragem com preservação das bordas.