27 resultados para Computação - Matemática


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese analisa os efeitos na aprendizagem, a partir de uma proposta pedagógica que integra uma metodologia de intervenção apoiada por recursos tecnológicos. A proposta pedagógica é implementada em ambiente virtual de aprendizagem e se destina à realização de estudos complementares, para alunos reprovados em disciplinas iniciais de matemática em cursos de graduação. A metodologia de intervenção é inspirada no método clínico de Jean Piaget e visa identificar noções já construídas, propor desafios, possibilitar a exploração dos significados e incentivar a argumentação lógica dos estudantes. O ambiente de interação é constituído por ferramentas tecnológicas capazes de sustentar interações escritas, numéricas, algébricas e geométricas. A Teoria da Equilibração de Piaget possibilita a análise de ações e reflexões dos estudantes diante dos desafios propostos. São identificados desequilíbrios cognitivos e processos de reequilibração advindos das interações com os objetos matemáticos. A transformação de um saber-fazer para um saber-explicar é considerada indicativo de aprendizagem das noções pesquisadas e decorre de um desenvolvimento das estruturas de pensamento. Além da análise de processos de reequilibração cognitiva, analisou-se o aproveitamento dos estudantes, considerando os graus de aprendizagem definidos nos critérios de certificação dos desempenhos. Os resultados indicam que as interações promovidas com a estratégia pedagógica proposta colaboraram para a aprendizagem de noções e conceitos matemáticos envolvidos nas atividades de estudo. A análise do processo de equilibração permite identificar a aprendizagem como decorrência do desenvolvimento de estruturas cognitivas. O movimento das aprendizagens revelou processos progressivos de aquisição de sentido dos objetos matemáticos, com graus que expressaram condutas de regulação. Estas permitiram ultrapassar um fazer instrumental, por aplicação de fórmulas ou regras, e avançar por um fazer reflexivo sobre os significados dos conceitos envolvidos. A pesquisa sugere a implementação da proposta como estratégia pedagógica na proposição de ambientes de aprendizagem para a educação matemática a distância e como apoio ao ambiente presencial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho estuda o movimento de renovação do ensino da matemática conhecido como o "movimento da matemática moderna",surgido no Brasil no inicio dos anos 60. Através do estudo da ação, do discurso e do pensamento dos protagonistas em relação com o contexto histórico em que foram produzidos e com o movimento da matemática moderna de âmbito internacional, procura explicar o alcance e as limitações desse movimento, em sua dinâmica e elaboração pedagógica. A abordagem adotada considera tanto os aspectos do movimento que o identificam com um processo mais amplo e de âmbito mundial de crescente valorização do ensino das ciências naturais e da matemática no período que sucedeu à Segunda Guerra Mundial, no qual o movimento da matemática se insere, como as especificidades do movimento relacionadas com a ação dos protagonistas e a realidade do pais. A análise do movimento como ocorreu no Brasil é feita fundamentalmente a partir da leitura de documentos produzidos durante o periodo de sua existência e de depoimentos obtidos através de entrevistas semi-estruturadas com participantes do movimento. O contexto no qual é situada essa análise inclui uma descrição breve da realidade politica, econômica e social do pais, com ênfase na realidade educacional - em particular, do ensino secundário e nos debates pedagógicos produzidos no período As modificações nas relações entre ciência e produção material no âmbito da economia capitalista são tratadas como elemento decisivo para a explicação da combinação entre esforços de governos e de educadores para a renovação e melhoria do ensino da matemática, desde os anos 50, em vários paises. O trabalho apresenta, em suas conclusões, conexões que contribuem para a clarificação de como o movimento foi marcado pelo contexto histórico em que surgiu e se desenvolveu. São enfatizadas as relações entre: o crescimento e a modernização da economia brasileira e o otimismo acerca das consequências sociais da melhoria do ensino e do desenvolvimento da ciência no pais; a expansão do ensino secundário desde os anos 30, acelerada nos anos 60, e as preocupações dos educadores acerca da eficiência e da deselitização desse ensino. O trabalho aponta, também, as conexães entre o movimento da matemática moderna e os debates sobre ensino de matemática realizados no pais antes e depois do movimento, situando-o como momento de um processo iniciado nos anos 50, anos 80, de iniciativa dos professores de matemática em torno da reflexão e renovação de sua própria prática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O conceito de parcialidade e importante em diversas áreas como a Matemática e a Ciência da Computação; ele pode ser utilizado, por exemplo, para expressar computações que não terminam e para definir funções recursivas parciais. Com rela cão a grafos, categorias de homomorfismos parciais são comuns (por exemplo, em gramáticas de grafos com a técnica de single-pushout). Este trabalho propõe uma abordagem diferente: a parcialidade é usada na estrutura interna dos objetos (não nos morfismos).Istoéfeito utilizando uma extensão do conceito de Categoria das Setas, chamada de Categoria das Setas Parciais. E definida entãoa categoria Grp de grafos parciais(tais que arcos podem possuir ou não vértices de origem e/ou destino) e homomorfismos totais.A generalização deste modelo resulta em categorias de grafos parciais internos.Émostrado que Grp é bicompleta e, se C é um topos, a categoria dos grafos parciais internos a C é cocompleta. Grafos parciais podem ser utilizados para definir modelos computacionais tais como autômatos. Uma categoria de Autômatos Parciais, denominada Autp, é construída a partir da categoria de Grafos Parciais. Usando uma extensão de composição de spans de grafos para autômatos, chamada de Composição de Transições, e possível definir as computações de autômatos. Brevemente, uma composição de transi cões de dois autômatos parciais resulta em um autômato parcial onde cada transição representa um caminho de tamanho dois (entre vértices), tal que a primeira metade é uma transição do primeiro autômato e a segunda metade é uma transição do segundo. É possível compor um autômato consigo mesmo diversas vezes; no caso de n sucessivas composições de transições, pode-se obter as palavras da linguagem aceita pelo autômato que necessitam de n+1 passos de computação nos arcos que não possuem origem e nem destino definidos do autômato parcial resultante.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo realizado no Curso de Formação de Professores de Matemática da Universidade do Estado do Pará- UEPA, teve como finalidade verificar o obstáculo epistemológico, encontrado na aplicabilidade da linguagem matemática em sistemas físicos, através da relação existente entre as dificuldades dos licenciandos em Matemática na aprendizagem de Física Clássica e a prática da Matemática como linguagem nas disciplinas específicas do curso de Matemática, e as possíveis conseqüências à futura prática pedagógica desses professores, no nível fundamental e médio. Para desenvolvê-lo recorri à pesquisa qualitativa em uma abordagem etnográfica. Delimitei como sujeitos da pesquisa 15 alunos de uma turma do 3° ano que cursavam a disciplina Física Geral do Curso de Licenciatura Plena em Matemática no ano de 2000 para obter os dados necessários. Observei os alunos durante as aulas e seminários realizados e os entrevistei em busca de subsídios para o estudo.Concluo que há relação entre a dificuldade na aprendizagem da Física Clássica e a prática da Matemática como linguagem nas disciplinas específicas do Curso de Licenciatura Plena em Matemática e a futura prática pedagógica no ensino fundamental e médio. Concluo também que falta aos professores que ministram estas disciplinas superar um obstáculo epistemológico em relação ao conhecimento matemático, isto é, uma prática consistente e articulada à teoria e prática da linguagem matemática. Ao final, indico referenciais para possíveis mudanças no Curso e espero que essas mudanças contribuam para uma aprendizagem significativa na formação de futuros professores de Matemática nas universidades comprometidas com a formação do licenciado em Matemática ou naquelas que fazem uso da própria Matemática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A textura é um atributo ainda pouco utilizado no reconhecimento automático de cenas naturais em sensoriamento remoto, já que ela advém da sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil a sua quantificação. A morfologia matemática, através de operações como erosão, dilatação e abertura, permite decompor uma imagem em elementos fundamentais, as primitivas texturais. As primitivas texturais apresentam diversas dimensões, sendo possível associar um conjunto de primitivas com dimensões semelhantes, em uma determinada classe textural. O processo de classificação textural quantifica as primitivas texturais, extrai as distribuições das dimensões das mesmas e separa as diferentes distribuições por meio de um classificador de máxima-verossimilhança gaussiana. O resultado final é uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teoria das Categorias é uma ramificação da Matemática Pura com campo científico aparentemente distinto daquele que é objeto de estudo e pesquisa para a Ciência da Computação. Entretanto, algumas características dessa teoria matemática demonstram sua utilidade na pesquisa computacional. Dentre essas características podemos citar independência de implementação, dualidade, herança de resultados, possibilidade de comparação da expressividade de formalismos, notação gráfica e, sobretudo, expressividade das construções categoriais. Sua expressividade é explicitamente destacada pelo MEC nas Diretrizes Curriculares de Cursos da Área de Computação e Informática, onde afirma-se que “Teoria das Categorias possui construções cujo poder de expressão não possui, em geral, paralelo em outras teorias”. Entretanto, Teoria das Categorias tem encontrado obstáculos para ser efetivamente aplicada na Ciência da Computação. A baixa oferta de bibliografia - predominantemente de língua inglesa - e a falta de uniformidade na exposição do que sejam os tópicos introdutórios convergem e potencializam outro grande empecilho à sua propagação: a baixa oferta de cursos com enfoque em Teoria das Categorias. A fim de transpor essas dificuldades, Fábio Victor Pfeiff desenvolveu o CaTLeT, um aplicativo de interface visual que tinha como objetivo facilitar o acesso aos conceitos introdutórios de Teoria das Categorias Com inspiração fortemente educacional, CaTLeT somente é capaz de representar objetos e morfismos atômicos, o que o limita a servir somente aos conceitos iniciais. Em 2003, o CaTLeT foi ampliado e os objetos e morfismos, antes atômicos, passaram a representar conjuntos e relações, respectivamente. Este projeto consiste em uma ampliação tanto do CaTLeT quanto dos objetivos que justificaram sua criação. Esta dissertação trata de um projeto de simulador categorial e de sua respectiva implementação as quais visam fornecer suporte computacional a fim de facilitar o acesso a conceitos intermediários de Teoria das Categorias e servir como suporte à pesquisa na área. A construção desse simulador possui três critérios de avaliação como parâmetro: boa acessibilidade, alta relevância das estruturas implementadas e alta cobertura. A nova ferramenta - denominada CaTReS - deve manter a acessibilidade a usuários leigos que sua predecessora possui e ampliar significativamente as estruturas suportadas, além de incluir tratamento à conceitos funtoriais. Dessa maneira, este projeto vem para auxiliar na superação dos obstáculos anteriormente mencionados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese tem o objetivo de mostrar que o sujeito aprendente, ao se deparar com um conceito matemático já construído por ele, pode, em outro contexto, atribuir-lhe novos sentidos e re-significá-lo. Para tanto, a investigação se apóia em duas teorias filosóficas: a filosofia de Immanuel Kant e a filosofia de Ludwig Wittgenstein. Também buscamos subsídios teóricos em autores contemporâneos da filosofia da matemática, tais como Gilles-Gaston Granger, Frank Pierobon, Maurice Caveing e Marco Panza. No decorrer do processo da aprendizagem, o conceito matemático está sempre em estado de devir, na perspectiva do aluno, mesmo que este conceito seja considerado imutável sob o ponto de vista da lógica e do rigor da Matemática. Ao conectar o conceito com outros conceitos, o sujeito passa a reinterpretá-lo e, a partir desta outra compreensão, ele o reconstrói. Ao atribuir sentidos em cada ato de interpretação, o conceito do objeto se modifica conforme o contexto. As estruturas sintáticas semelhantes, em que figura o objeto, e as aparências semânticas provenientes da polissemia da linguagem oferecem material para as analogias entre os conceitos. As conjeturas nascidas destas analogias têm origem nas representações do objeto percebido, nas quais estão de acordo com a memória e a imaginação do sujeito aprendente. A imaginação é a fonte de criação e sofre as interferências das ilusões provenientes do ato de ver, já que o campo de visão do aluno está atrelado ao contexto no qual se encontra o objeto. A memória, associada às experiências vividas com o objeto matemático e à imaginação, oferece condições para a re-significação do conceito. O conceito antes de ser interpretado pelo aluno obedece às exigências e à lógica da matemática, após a interpretação depende da própria lógica do aluno. A modificação do conceito surge no momento em que o sujeito, ao interpretar a regra matemática, estabelece novas regras forjadas durante o processo de sua aplicação. Na contingência, o aluno projeta sentidos aos objetos matemáticos (que têm um automovimento previsto), porém a sua imaginação inventiva é imprevisível. Nestas circunstâncias, o conceito passa a ser reconstruível a cada ato de interpretação. As condições de leitura e de compreensão do objeto definem a construção do conceito matemático, a qual está em constante mudança.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho apresenta uma proposta metodológica para o ensino de Ciência da Computação para Crianças, elaborada, a partir de pesquisas e estudos, tendo, como objetivo, a aplicação dessa metodologia para correção e testes. Devido à disseminação dos computadores e de seu uso como parte da formação dos alunos, muito se tem discutido sobre a união entre os recursos tecnológicos e a educação. A inclusão da informática no processo educativo vem sendo direcionada para a utilização e classificação de produtos de software educacional, em técnicas de comunicação à distância, no uso de recursos de multimídia ou de realidade virtual para apoio ao conteúdo abordado pelo professor e, também, para a construção de ambientes computacionais, que possam proporcionar uma mudança de paradigma educacional. No entanto não adianta tornar disponível toda essa tecnologia, se, rapidamente, são abandonadas e são substituídas ferramentas e técnicas dentro da Computação. Por isto, tão importante quanto o ensino das tecnologias correntes é o ensino dos conceitos fundamentais da Ciência da Computação. Esses conceitos, além de proporcionarem um embasamento teórico para entendimento da ciência envolvida na computação, também propiciam o desenvolvimento de um raciocínio lógico e formal, assim como de habilidades que são exigidas no mundo atual. Este trabalho apresenta pesquisas de campo sobre o uso da Informática Educativa em algumas escolas, a identificação, através de professores da graduação e pós-graduação, de alguns dos conceitos fundamentais da Ciência da Computação e uma pesquisa sobre o que crianças gostariam de aprender sobre Ciência da Computação. A partir dos resultados, são elaboradas teorias, demonstrações e exercícios para o ensino destes para crianças. Essa metodologia é aplicada a duas turmas heterogêneas de crianças para sua validação. Pretende-se que o estudo desses conceitos aguce o senso crítico e capacite as crianças não só a usarem as tecnologias mas também a entenderem seu funcionamento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese apresenta uma arquitetura de Sumarização Automática de Textos Consciente de Contexto que visa contribuir como fator de adaptação em dispositivos de computação móvel. O processo de sumarização proposto baseia-se em informações contextuais, especificamente localização espacial, temporalidade e perfis de usuário, em uma extensão do algoritmo de sumarização extrativa TF-ISF pela inclusão de níveis de relevância adicionais representados por Palavras-Contextuais. A necessidade de adaptação no processo de visualização de textos em dispositivos de computação móvel advém tanto do crescimento da disponibilização de informações em redes de computadores sem fio quanto das características e restrições intrínsecas da plataforma computacional móvel, bem como da baixa capacidade de armazenamento e processamento e interfaces restritas em termos de tamanho e possibilidades de interação. Como um dos possíveis fatores de adaptação sugere-se a utilização da sumarização automática de textos. Esta possibilita a seleção e apresentação das sentenças consideradas mais relevantes dos documentos originais produzindo, com isso, documentos compactos e mais apropriados para a materialização em dispositivos móveis. Entretanto, considera-se que os métodos de sumarização automática atualmente disponíveis na literatura não atendem plenamente a questão proposta porque não consideram, quando do processo de sumarização, as importantes informações contextuais fornecidas pela computação móvel. Como resultado do processo proposto de adaptação através da Sumarização Consciente de Contexto espera-se que os extratos obtidos sejam mais úteis aos usuários dos dispositivos de computação móvel pela sua maior adequação tanto ao contexto quanto ao perfil, bem como da efetiva consideração das limitações intrínsecas a estes. Esta solução visa contribuir fortemente para a disponibilização de informações adequadas e personalizadas, no momento oportuno, para o local adequado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação estuda relações entre o processo de aprendizagem de Matemática e o perfil do sujeito da Sociedade em Rede a partir das interações registradas na Lista de Discussão de e-mail da disciplina de Computador na Matemática Elementar do curso de Licenciatura em Matemática da Universidade Federal do Rio Grande do Sul. Os processos sócio-cognitivos dos licenciandos são analisados para investigar a hipótese de que aprender Matemática com o uso das Tecnologias da Informação contribui para a formação do sujeito da Sociedade em Rede. Estão presentes autores como Manuel Castells, Pierre Lévy e Edgar Morin, que participam da configuração dos novos paradigmas da Sociedade em Rede; Jean Piaget, Antonio Battro e Seymour Papert que, dentro da perspectiva da Epistemologia e da Psicologia Genéticas, contribuem para o estudo da aprendizagem; e Jean-Blaise Grize, que analisa os processos de comunicação Seus aportes teóricos nos permitem entrelaçar as áreas de conhecimento de Psicologia Social e Institucional, Educação (Instituição Escolar) e Matemática. A análise de uma proposta didática apoiada na utilização de Tecnologias da Informação (software Super Logo e Lista de Discussão) nos permite observar o movimento de transição de uma postura passiva, receptora de informações, para uma postura ativa, produtora de conhecimento na qual os sujeitos foram desenvolvendo atitudes, habilidades e competências para detectar e formular problemas, pensá-los sob diferentes perspectivas e equacioná-los; buscar e implementar as melhores soluções; testar e avaliar as soluções encontradas; contextualizar e questionar os caminhos escolhidos para solucionar desafios; operar com os conhecimentos, processá-los e integrá-los em novos sistemas de significação; e saber trabalhar em equipe, tendo disposição para ouvir, contribuir e produzir no e para o grupo.