17 resultados para Algoritmos iterativos de reconstrução


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este texto apresenta a tese de doutorado em Ciência da Computação na linha de pesquisa de Inteligência Artificial, dentro da área de IAD – Inteligência Artificial Distribuída (mais especificamente os Sistemas Multiagentes – SMA). O trabalho aborda a formação de grupos colaborativos em um ambiente multiagente interativo de aprendizagem na web, através da utilização de técnicas de Inteligência Artificial. O trabalho apresenta a definição e implementação de uma arquitetura de agentes modelados com algoritmos genéticos, integrada a um ambiente colaborativo de aprendizagem, o TelEduc. Inicialmente faz-se um breve estudo sobre as áreas envolvidas na tese: Informática na Educação, Educação a Distância, Inteligência Artificial, Inteligência Artificial Distribuída e Inteligência Artificial Aplicada à Educação. Abordam-se, também, as áreas de pesquisa que abrangem os Sistemas Multiagentes e os Algoritmos Genéticos. Após este estudo, apresenta-se um estudo comparativo entre ambientes de ensino e aprendizagem que utilizam a abordagem de agentes e a arquitetura proposta neste trabalho. Apresenta-se, também, a arquitetura de agentes proposta, integrada ao ambiente TelEduc, descrevendo-se o funcionamento de cada um dos agentes e a plataforma de desenvolvimento. Finalizando o trabalho, apresenta-se o foco principal do mesmo, a formação de grupos colaborativos, através da implementação e validação do agente forma grupo colaborativo. Este agente, implementado através de um algoritmo genético, permite a formação de grupos colaborativos seguindo os critérios estabelecidos pelo professor. A validação do trabalho foi realizada através de um estudo de caso, utilizando o agente implementado na formação de grupos colaborativos em quatro turmas de cursos superiores de Informática, na Região Metropolitana de Porto Alegre, em disciplinas que envolvem o ensino de programação de computadores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algoritmos ótimos na extração de componentes principais com aprendizado não-supervisionado em redes neurais de múltiplos neurônios de saída são não-locais, ou seja, as modificações em uma dada sinapse entre dois neurônios dependem também da atividade de outros neurônios. Esta rede ótima extrairá as principais componentes dos dados e submetidos à sua primeira camada. As principais componentes são as projeções destes vetores nos autovalores máximos da matriz de correlação Gij = (eiej), onde a média (-) é sobre a distribuição de e. Existem fortes evidências indicando que sinapses biológicas só se modificam via regras locais, como por exemplo a regra de Hebb. Mas se aplicarmos regras locais numa rede com múltiplas saídas, todos os neurônios da saída serão equivalentes e darão respostas redundantes. A rede será bastante ineficiente. Um modo de contornar este problema é através da restrição dos campos receptivos dos neurônios de saída. Se cada neurônio acessar diferentes partes dos estímulos de entrada, a redundância diminui significativamente. Em contrapartida, ao mesmo tempo que a redundância diminui, também diminui a informação contida em cada neurônio; assim, devemos balancear os dois efeitos otimizando o campo receptivo. O valor ótimo, em geral, depende da natureza dos estímulos, sua estatística, e também do ruído intrínseco à rede. Objetivamos com este trabalho determinar a estrutura ótima de campos receptivos com aprendizado não-supervisionado para uma rede neural de uma camada em diversas condições medindo seu desempenho a partir de técnicas de reconstrução.