172 resultados para Equações integrais
Resumo:
Este trabalho visa o uso da função de Green de valor inicial no ajuste geostrófico e do método Semi-Lagrangeano na integração de um modelo acoplado oceano-atmosfera descrito pelas equações de águas rasas. O ajuste geostrófico é considerado atravées de perturbações na pressão e do vento. No caso de sistemas sem rotação, é discutida a relação da equação hidrostática com ondas longas não-dispersivas. Com rotação, a conservação da vorticidade potencial permite escolher a elevação correspondente a um estado de equilíbrio geostrófico. O sistema de equações de águas rasas é desacoplado em equações de Klein-Gordon com valores iniciais e termos não-homogêneos acoplados. A resposta dinâmica formada pela resposta transiente e a resposta forçada é obtida para uma perturbação inicial da elevação. A ação do vento como forçante nas equações de momento 2D, através do transporte de Eckman, conduz a uma equação de águas rasas forçada. Uma decomposição da resposta forçada é realizada com uma resposta permanente, que satisfaz a equação de Helmholtz , e com o uso da base dinâmica gerada pela resposta impulso. Um modelo hidrodinâmico 3D introduzido por Casulli e governado por equações não-lineares de águas rasas é integrado na vertical para a obtenção de um modelo 2D. Com isto, as condições de contorno devido a tensão do vento e a fricção devido a topografia do fundo, transformam-se em forçantes do modelo. O modelo foi integrado com um método semi-implícito em diferenças finitas, utilizando-se o método Semi-Lagrangeano para a parte advectiva. Simulações simbólicas foram realizadas para o ajuste geostrófico devido a perturbações de duração infinita e finita para a elevação e para o efeito da tensão do vento. Foram realizadas simulações numéricas para variadas geometrias, em particular a Baia de Guanabara e a Lagoa do Patos.
Resumo:
Neste trabalho, apresenta-se um estudo numérico de um modelo convectivo-difusivo-reativo em combustão baseado no Método de Elementos Finitos. Primeiramente, apresenta-se o desenvolvimento das equações de balanço (quantidade de movimento, massa, espécie e energia) que modelam um processo de mistura molecular e reação química, irreversível, de passo único e exotérmica entre duas espécies químicas F (Combustível) e O (Oxidante). Tais espécies reagem e formam um produto P, conforme vFF +vOO ! vPP + calor, onde vF , vO e vP são os coeficientes estequiométricos molares. No modelo, considera-se que a reação é de primeira ordem com respeito a cada um dos reagentes e que a taxa de reação específica segue a cinética de Arrhenius. Em seguida, o modelo é estudado numericamente considerando-se um domínio retangular e condições de contorno do tipo Neumann. Tanto a Técnica das Diferenças Finitas como a Técnica de Elementos Finitos são utilizadas na discretização espacial das equações do modelo. Para a integração no tempo, utiliza-se a método de Runge-Kutta simplificado de três estágios. Os diferentes códigos computacionais obtidos, tanto pela Técnica de Diferenças Finitas como de Elementos Finitos, são comparados frente ao problema de interesse. Observa-se que ambas as técnicas apresentam resultados equivalentes. Além disso, os códigos desenvolvidos são robustos (capazes de lidar com vários conjuntos de parâmetros), de baixo custo e precisos. Por fim, apresenta-se uma revisão do trabalho de Zavaleta [48], no qual obtem-se uma estimativa local do erro na aproximação do problema estudado pela Técnica de Elementos Finitos.
Resumo:
No estudo da propagação de uma doença infecciosa, diz-se que sua transmissão ocorre horizontalmente, quando um indivíduo suscetível tem um contato direto ou indireto com um indivíduo infeccioso. Algumas doenças, entretanto, também podem ser transmitidas verticalmente, entendendo-se que, neste caso, a doença é transmitida a um indivíduo, ao ser gerado por uma mãe infecciosa. Fazendo uso de modelos epidemiológicos determinísticos básicos, envolvendo sistemas de equações diferenciais ordinárias, nosso principal objetivo, neste trabalho, consiste em investigar qual o papel da transmissão vertical na propagação de doenças causadas por microparasitas. Diversas formas de inclusão de transmissão vertical são apresentadas e, em cada modelo estudado, investigamos a existência e a estabilidade local dos estados de equilíbrio da população hospedeira, identificamos os parâmetros e limiares que caracterizam a dinâmica do sistema, e completamos as informações decorrentes dos resultados analíticos com a apresentação de soluções numéricas do mesmo. Por fim, comparamos os efeitos da transmissão horizontal com aqueles decorrentes da transmissão vertical.
Resumo:
Neste trabalho implementou-se o elemento hexaédrico com um ponto de integração para análise estática e dinâmica de placas e cascas de materiais compósitos laminados com ou sem enrijecedores. O elemento está livre de travamento volumétrico e travamento de cisalhamento, não apresentando modos espúrios. São também incluídos problemas com não-linearidade geométrica A matriz de rigidez e de massa são dadas de forma explícita, reduzindo o tempo computacional, especialmente na análise não-linear. Para evitar o travamento de cisalhamento as componentes de deformações são referidas a um sistema co-rotacional. O travamento volumétrico é também eliminado, já que a parte dilatacional (esférica) da matriz gradiente é avaliada apenas no ponto central do elemento. Para a solução das equações de equilíbrio na análise estática, utilizam-se um método direto baseado na eliminação de Gauss ou um método iterativo de gradientes conjugados com precondicionamento executado através da eliminação incompleta de Choleski. Para a análise dinâmica, as equações de equilíbrio são integradas através do método explícito ou implícito de Taylor-Galerkin ou do método implícito de Newmark. Para análise não-linear utiliza-se o Método Generalizado de Controle dos Deslocamentos. Através de exemplos numéricos demonstra-se a eficiência e o potencial do elemento tridimensional na análise linear e não-linear de placas e cascas de materiais laminados. Os resultados são comparados com trabalhos que utilizam diferentes elementos de placas e cascas.
Resumo:
Em modelos em que a distribuição espacial da população não é con- siderada, isto é, quando se supõe que haja uma homogeneidade espacial, e se estuda a evolução temporal do sistema, há uma única variável independente: o tempo. Caso a população seja constituída de duas espécies, do tipo parasitóide-hospedeiro, e a variável independente tempo for considerada discreta, teremos um sistema de equações a diferenças, como por exemplo o modelo de Nicholson-Bailey cujas soluções são apresentadas neste trabalho. Populações espacialmente distribuídas, em um espaço de natureza discreta, juntamente com a dinâmica vital em tempo discreto, têm o seu comportamento estudado através de redes de mapas acoplados. Após estudar o modelo de Hassell (dinâmica vital de Nicholson-Bailey com movimentação por difusão) e o modelo planta-herbívoro com movimentação por taxia, deduzimos e simulamos um modelo incluindo movimentação por taxia, difusão e convecção. É também apresentado neste trabalho, um paralelo entre estes modelos de redes de mapas acoplados e aqueles com as equações diferenciais correspondentes.
Resumo:
Sistemas do tipo parasitóide-hospedeiro têm sido objeto de estudo em diversos trabalhos, com enfoque especial em problemas de persistência e/ou co-existência de espécies. Nesta dissertação, numa primeira abordagem, considerando meios homogêneos, são apresentados, usando sistemas de equações a diferenças, o modelo de Nicholson-Bailey e algumas de suas modificações que previnem as oscilações divergentes bem como a extinção das espécies apresentadas no modelo original. Em cada um destes modelos, investigamos a existência e a estabilidade dos estados de equilíbrio das populações, identificamos os parâmetros e limiares que caracterizam a dinâmica do sistema, e visualizamos as informações decorrentes dos resultados analíticos, através de gráficos construídos a partir de simulações computacionais. A seguir, adotamos a formulação de Rede de Mapas Acoplados, através da qual o sistema é espacialmente estruturado, e revisamos o modelo de Hassell et al.(1991) e a influência da dispersão local difusiva no modelo anteriormente estudado. O trabalho é complementado mediante a inclusão da existência de refúgios espaciais, caracterizados por regiões nas quais a eficiência do parasitóide é muito menor que no restante do hábitat. Simulações computacionais foram realizadas para diversas configurações de refúgios, diferindo em forma e tamanho. Em especial foram analisadas a sua influência nos padrões espaciais e nas populações dentro e fora dos refúgios
Resumo:
Os afundamentos de tensão são reduções de curta duração entre o 10% a 90% da magnitude de tensão eficaz. Usualmente, estes afundamentos são associados com falhas no sistema de energia elétrica, mas podem ser causados pela elevada corrente de partida de motores de indução ou energização de transformadores. Apesar de sua curta duração, tais eventos podem causar sérios problemas para alguns equipamentos. As conseqüências dos afundamentos de tensão sobre a máquina assíncrona são: perda de velocidade durante o afundamento e picos de corrente e de conjugado que aparecem na queda de tensão e no instante de restabelecimento. Este estudo visa analisar o comportamento da máquina assíncrona diante de afundamentos de tensão e as características destes, devido à influência do motor assíncrono como carga. Enfocando-se neste ponto, é que foram considerados diferentes tipos de afundamentos devido a diferentes falhas, que produziram quedas de tensão nos terminais da máquina assíncrona com variações na magnitude e no argumento de tensão. As simulações foram realizadas aplicando um método numérico tradicional e um método simplificado, o método simplificado lineariza as equações diferenciais elétricas da máquina assíncrona considerando a velocidade mecânica constante, para o cálculo dos transitórios elétricos no início da queda de tensão e no restabelecimento da mesma. Os transitórios obtidos pelo método numérico tradicional (Runge Kutta quarta ordem) e o método simplificado foram comparados, para verificar a precisão deste método com respeito ao numérico tradicional, concluindo-se, que o método simplificado poderá aplicar-se em máquinas de baixo escorregamento e elevada constante de inércia. Além disso, foram realizados experimentos, submetendo o sistema a diferentes quedas de tensão, considerando diferentes magnitudes e durações no afundamento.