2 resultados para stress effects
em Digital Archives@Colby
Resumo:
Depression is associated with glucocorticoid hypersecretion, due to dysfunction of the hypothalamo-pituitary-adrenocorticol axis (HPA-axis). Because excess glucocorticoids are associated with depressive-like features in humans, glucocorticoid receptor antagonists are currently being tested for antidepressant efficacy in clinical trials. In the current study the hypothesis that mifepristone (RU486), a glucocorticoid receptor antagonist, would decrease the neuroendocrine and central HPA-axis responses to an acute stressor and attentuate depressive like behavior in an animal model of behavioral helplessness (forced swim test) was tested. Adult male rats were treated with 10 mglkg RU486 (subcutaneous) for five days and then exposed to a IO-minute forced swim test (FST), conducted in Plexiglas cylinders. FST sessions were videotaped for later analysis of behavioral immobility. Plasma ACTH and corticosterone CORT were measured at 15min and 90min after FST cessation. Animals were perfused and brains were collected for immunocytochemical assessment of c-Fos expression in the medial prefrontal cortex (mPFC), a brain region implicated in both depression and central control of the HPA axis. RU486 significantly decreased peak ACTH and CORT concentrations following FST exposure. In addition, glucocorticoid negative feedback was at1enuated in RU486-treated animals exposed to the FST. Exposure to FST alone induced c-FOS expression in the mPFC, as measured by the number of c-Fos positive neurons. Treatment with RU486 significantly increased the number of rnPFC c-Fos positive cell following FST exposure. The behavioral data obtained from FST paradigm, demonstrated that RU486 decreased immobility in the FST illustrating the potential efficacy of this drug as an antidepressant. Collectively these data suggest that RU486 dampens HPA-axis responses to stress, possibly by enhancing the excitability of stress-inhibitory neurons in the mPFC. This is particularly exciting, given the fact that this neural region is associated with decreased neural activity during depression in humans.
Resumo:
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone produced by the pineal gland that works to regulate sleep/wake cycles and activity rhythms. The effects of melatonin in metabolism are far from understood. Melatonin was injected into the fiddler crab, Uca pugilator, to investigate the effects of melatonin on hemolymph glucose and lactate levels. Following injection at t=O, hemolymph samples were collected at t=O.5, 1.0, 1.5 and 5.0 hours. Melatonin caused a decrease in the stress response to injection and also caused delayed hyperglycemia. Melatonin-injected crabs also retained the glucose and lactate rhythymicity when compared to saline-injected crabs. Glucose and lactate rhythms followed the same pattern indicating that the cycles are coupled. Also, melatonin was synthesized using tbe Fischer Indole synthesis and characterized using H?NMR. The synthetic melatonin demonstrated biological activity when injected into the crabs as when compared to pure melatonin on the effects on glucose and lactate concentrations. Overall, melatonin influences both glucose metabolism and the production of lactate.