3 resultados para quantitative study
em Digital Archives@Colby
Resumo:
To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.
Resumo:
In industrial polymer and synthetic rubber production facilities, workers are exposed to 1,3-butadiene. This compound is converted in vivo to 1,2,3,4-diepoxybutane (DEB) and has been linked to increased incidences of cancer in these individuals. Carcinogenesis has been attributed to formation of DEB induced DNA interstrand cross-links. Previous studies have demonstrated that DEB cross-links deoxyguanosine residues within 5'-GNC sequences in synthetic DNA, in restriction fragments, and in defined sequence nucleosomes. The current study utilized the polymerase chain reaction (PCR) to examine DEB damage frequencies within nuclear genes, found within "open" regions of chromatin, as compared to regions of unexpressed sequence that reside in tightly packed, "closed" chromatin, to more closely model DEB reactivity in vivo. These initial studies have been performed in chicken liver homogenates. Preliminarily, we have found a dose-dependent DEB lesion-forming response within "open" chromatin. DEB appears to have little-to-no effect upon regions of "closed" chromatin.
Resumo:
One of the most puzzling phenomena of abnormal renal physiology is the occurrence of the nephrotic syndrome. The syndrome has been defined by a collection of clinical and pathological symptoms, but there is no correlation between the clinical and pathological symptoms nor is the etiology of the syndrome known. Proteinuria is probably the most distinguishing feature in the nephrotic syndrome, and there are two possible explanations for its occurrence: (1) the excessive amounts of protein found in nephrotic urine could be due to an increased basement membrane permeability in the glomerulus of the kidney or (2) dysproteinemia. An attempt has been made to evaluate the theory of dysproteinemia in connection with the syndrome. The albumin fractions of nephrotic urine have been studied for their amino acid composition by separating them from the urine by paper electrophoresis, hydrolyzing them, and identifying the amino acids present by two-dimensional chromatography. There seem to be no variations in the qualitative makeup of nephrotic albumin from that of normal albumin, but the literature shows that there are some slight variations in the quantitative amino acid composition of nephrotic albumin compared with normal albumin. More extensive and highly developed experimentation along the lines of protein structure and composition must be done before it can conclusively be stated that dysproteinemia is of importance in the nephrotic syndrome.