2 resultados para process developing
em Digital Archives@Colby
Resumo:
To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.
Resumo:
Millions of unconscious calculations are made daily by pedestrians walking through the Colby College campus. I used ArcGIS to make a predictive spatial model that chose paths similar to those that are actually used by people on a regular basis. To make a viable model of how most travelers choose their way, I considered both the distance required and the type of traveling surface. I used an iterative process to develop a scheme for weighting travel costs which resulted in accurate least-cost paths to be predicted by ArcMap. The accuracy was confirmed when the calculated routes were compared to satellite photography and were found to overlap well-worn “shortcuts” taken between the paved paths throughout campus.