2 resultados para mitochondrial RNA

em Digital Archives@Colby


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diepoxybutane (DEB), a known industrial carcinogen, reacts with DNA primarily at the N7 position of deoxyguanosine residues and creates interstrand cross-links at the sequence 5'-GNC. Since N7-N7 cross-links cause DNA to fragment upon heating, quantative polymerase chain reaction (QPCR) is being used in this experiment to measure the amount of DEB damage (lesion frequency) with three different targets-mitochondrial (unpackaged), open chromatin region, and closed chromatin region. Initial measurements of DEB damage within these three targets were not consistent because the template DNA was not the limiting reagent in the PCR. Follow-up PCR trials using a limiting amount of DNA are still in progress although initial experimentation looks promising. Sequencing of these three targets to confirm the primer targets has only been successfully performed for the closed chromatin target and does not match the sequence from NIH used to design that primer pair. Further sequencing trials need to be conducted on all three targets to assure that a mitochondrial, open chromatin, and closed chromatin region are actually being amplified in this experimental series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4.5S RNA molecule of Escherichia coli is essential to cell viability. It has been shown that depletion of this molecule inhibits protein synthesis, induces the heat shock response, and generally slows cell growth. The molecule has also been implicated in protein secretion, as in cells depleted of 4.5S RNA, an unsecreted precursor to ?-lactamase accumulates (pre-?-lactamase). A role in protein secretion is further supported by structural similarities with the 7S RNA molecule of eukaryotic SRP, specific binding to SRP54, and its homolog in E. coli, P48, and the ability of 7S RNA from certain archaebacteria to suppress 4.5S RNA depletion. In this study I have utilized strains with mutant forms of the 4.5S RNA genes in order to study the effect of altered 4.5S RNA on cell physiology. These strains have their mutant 4.55 RNA under the control of the tryptophan synthetic operon. Decreased growth rates, inhibited cell division, and altered protein synthesis all result from these mutations.