2 resultados para insulin resistance -- physiological effect

em Digital Archives@Colby


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone produced by the pineal gland that works to regulate sleep/wake cycles and activity rhythms. The effects of melatonin in metabolism are far from understood. Melatonin was injected into the fiddler crab, Uca pugilator, to investigate the effects of melatonin on hemolymph glucose and lactate levels. Following injection at t=O, hemolymph samples were collected at t=O.5, 1.0, 1.5 and 5.0 hours. Melatonin caused a decrease in the stress response to injection and also caused delayed hyperglycemia. Melatonin-injected crabs also retained the glucose and lactate rhythymicity when compared to saline-injected crabs. Glucose and lactate rhythms followed the same pattern indicating that the cycles are coupled. Also, melatonin was synthesized using tbe Fischer Indole synthesis and characterized using H?NMR. The synthetic melatonin demonstrated biological activity when injected into the crabs as when compared to pure melatonin on the effects on glucose and lactate concentrations. Overall, melatonin influences both glucose metabolism and the production of lactate.