2 resultados para inhibitory assays
em Digital Archives@Colby
Resumo:
Bacterial isolates from natural sites with high toxic and heavy metal contamination more frequently contain determinants for resistance to antimicrobials. Natural strains were isolated from the ingesta and external slime of Salmo salar (Linnaeus, 1758) and Salvelinusjontinalis (Mitchell, 1814). Fish specimens were acquired from Casco Bay hatcheries, Casco, ME where there is no history of antibiotic use. Seventy-nine bacterial strains, including many well-documented salmonid commensals (an association from which the fish derives no benefit), were identified using 165 rRNA gene sequencing. Mercury resistant isolates were selected for initially on 25μM HgCI2. Strains were then grown at 20-24°C on Trypticase Soy Agar (TSA) plates containing 0-1000μM HgCl2 or 0-130μM Phenyl Mercuric Acetate (PMA). Mercury in the hatchery feed water due to ubiquitous non-point source deposition has selected for the mercury resistance observed in bacterial strains. Antibiotic resistance determinations, as measured by Minimum Inhibitory Concentration MIC) assays were performed on the 79 bacterial isolates using Sensititrel antimicrobial susceptibility panels. A positive linear correlation between the mercury (pMA and HgCl2) MIC's and antibiotic resistance for all observed strains was demonstrated. Conjugation experiments with Pseudomonas, Aeromonas, and Azomonas donors confirmed phenotypic transfer of penicillin and cephem resistances to Escherichia coli DH5a recipients. Conjugation experiments with Pseudomonas donors showed minimal transfer of tetracycline and minoglycoside resistances to Escherichia coli DH5a recipients. Our study suggests that the accumulation of antimicrobial resistances observed in these natural bacterial populations may be due to the indirect selective pressure exerted by environmental mercury.
Resumo:
In young cells of leaf meristems the progenitors of chloroplasts are small organelles known as proplastids, which divide and differentiate into chloroplasts. However, in the absence of light, proplastids undergo a different sequence of development and become etioplasts. When light is supplied to etiolated plants during the "greening" process, etioplasts differentiate into chloroplasts containing chlorophyll. An important light dependent step in chlorophyll biosynthesis is the photoreduction of protochlorophyllide to chlorophyllide by the NADPH:protochlorophyllide reductase (PCR) enzyme. This enzyme is present at high activity only in etiolated tissue and during early stages of light-induced chlorophyll synthesis. The enzyme and its corresponding mRNAs decrease dramatically with prolonged exposure to light. We have investigated the light-dependent transcriptional regulation of a PCR gene in greening maize leaf cells using a transient expression assay based on microprojectile bombardment. The promoter region was isolated and cloned into a ?-glucuronidase (GUS) reporter gene expression plasmid. We have used this chimeric plasmid in tungsten particle bombardment of both etiolated and greening maize seedling leaves to determine whether the cloned promoter region contains regulatory sequences that control light-responsive PCR gene expression.