2 resultados para Transition metal-free

em Digital Archives@Colby


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 1952, Dwyer and coworkers began testing a series of metal complexes for potential inhibition of cancer cell proliferation in animals.[l] The complexes tested were unsuitable for such studies due to their high toxicity. Therefore, no further work was done on the project. However, in 1965, Rosenberg and coworkers revisited the possibility of potential metal-based drugs. Serendipitously, they discovered that cis-diamminedichloroplatinum(lI) (cisplatin) inhibits cell division in E. coli.[2] Further studies of this and other platinum compounds revealed inhibition of tumor cell lines sarcoma 180 and leukemia LI2l0 in mice.[l] Cisplatin was approved by the Food and Drug Administration in 1970 as a chemical chemotherapeutic agent in the treatment of cancer. The drug has primarily been used in the treatment of testicular and ovarian cancers, although the powerful chemotherapeutic properties of the compound indicate use against a variety of other cancers.[3] The toxicity of this compound, however, warrants the development of other metal-based potential antitumor agents. The success of cisplatin, a transition-metal-based chemotherapeutic, opened the doors to a host of research on the antitumor effects of other transition-metal complexes. Beginning in the 1970s, researchers looked to rhodium for potential use in antitumor complexes. Dirhodium complexes with bridging equatorial ligands (Figure I) were the primary focus for this research. The overwhelming majority of these complexes were dirhodium(II) carboxylate complexes, containing two rhodium(II) centers, four equatorial ligands in a lantero formation around the metal center, and an axial ligand on either end. The family of complexes in Figure 1 will be referred to as dirhodium(II) carboxylate complexes. The dirhodium centers are each d? with a metal-metal bond between them. Although d? atoms are paramagnetic, the two unpaired electrons pair to make the complex diamagnetic. The basic formula of the dirhodium(lI) carboxylate complexes is Rh?(RCOO)?(L)? with R being methyl, ethyl, propyl, or butyl groups and L being water or the solvent in which the complex was crystalized. Of these dirbodium(II) carboxylate complexes, our research focuses on Rb la and two other similar complexes Rh2 and Rh3 (Figure 2). Rh2 is an activated form of Rhla, with four acetonitrile groups in place of two of the bidentate acetate ligands. Rh3 is similar to Rhla, with trifluoromethyl groups in place of the methyl groups on the acetate ligands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of macroheterocyclic compounds to complex with ionic species has led to the synthesis and investigation of many multidentate macroheterocyclic species. The most stable complexes are formed between macrocyclic polyetheral ligands (crown ethers) with alkali or alkaline earth metal iona. There is an excellent correlation of the stability of these complexes with the size of the cation and the site of the cavity in the macrocyclic ligand. Additional factors, such as the basicity of the ligand and the solvating ability of the solvent, also play important roles in the stabilization of the complex. The stability of such complexes has been advantageously used to increase anionic reactivity and has been successfully applied to several organic fluorinations, oxidations, and similar reactions. The use of macrocyclic ligands in inorganic syntheses of otherwise difficult to obtain fluoro compounds has not been reported. O-carborane and m-carborane, C2BlOHl2, are icosahedral cage systems derived from Bl2H122- by replacement of BH with the isoelectronic CH group. These stable molecules exhibit electron-deficient bonding which can best be explained by delocalization of electrons. This delocalization gives rise to stability similar to that found in aromatic hydrocarbons. Crown ether activated potassium fluoride has been successfully employed in the conversion of alkyl, acyl and aryl halides to their respective fluorides. Analogously halide substituted carboranes were prepared, but their fluoro-derivatives were not obtained. The application of crown ethers in the synthesis of transition metal complexes is relatively unexplored. The usual synthesis of fluoro-derivative transition metal complexes involves highly reactive and toxic fluorinating agents such as antimony trifluoride, antimony penta fluoride. bromine trifluoride and hydrogen fluoride, An attempted preparation of the hexafluoroosmate (IV) ion via a crown activated, or naked fluoride~was unsuccessful. Potassium hexafluoroosmate (IV), K208F6. was eventually prepared using bromine trifluoride as a fluorinating and oxidizing agent .