5 resultados para Topographic map

em Digital Archives@Colby


Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2005/1007/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2005/1013/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2005/1026/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this project is to provide an explanation for recently obtained binding constants for two similar guest molecules, NDMG and N-MAP, with a p-sulfonatocalix[6]arene host in ammonium acetate buffer. This work was done primarily using pressure perturbation calorimetry, which is a technique that determines the coefficient of thermal expansion, α, which is in turn related to the solute molecule's effect on the order of the surrounding water molecules. A series of experiments were designed to test the effects of suspected confounding variables on the validity of PPC data. PPC was then used to study NDMG and N-MAP in ammonium acetate buffer. NDMG exhibited a minimum in α as function of temperature, while N-MAP did not. This difference was theorized to be due to the formation of an intramolecular hydrogen bond in monocationic NDMG that would lower the heat capacity of the molecule and better distribute the molecule's charge. Computational work and nuclear magnetic resonance spectroscopy confirmed that monocationic, ring-closed NDMG has less concentrated charge and more constrained motion than monocationic, ring-open NDMG. This evidence supports the theory that monocationic NDMG forms an intramolecular hydrogen bond and that this may be responsible for the minimum in α. This difference may explain the differences in binding constants between NDMG and N-MAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This map is designed as a resource for students and the public to use and develop a better understanding of the trails system on the Colby Campus. I used a Garmin GPSmap 60CS to chart all the trails on Runnals Hill and in the Arboretum. Then, using ArcGIS, I compiled the tracked trails and laid them over an aerial photo of the campus. Because many of the trails are hard to find, I took digital photos of each trail entry to help the user locate them. Then, by taking note of the grade and width of the trail, I decided which trails were suitable for certain activities. This gives users an idea of where to go for walking, running, mountain biking, cross-country skiing, and snowshoeing.