3 resultados para Spread Spectrum Watermarking
em Digital Archives@Colby
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2009/1033/thumbnail.jpg
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.