2 resultados para Sequence Analysis, DNA

em Digital Archives@Colby


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volvox carteri, a multi-celled green algae, can grow synchronously given a sixteen hour light period followed by an eight hour dark period, a cycle which is repeated for a 48 hour growth cycle total. Near the end of each light period, reproductive cells divide rapidly resulting in the differentiation of ceIls. When the dark period begins, this differentiation stops and the cells remain dormant with little protein synthesis or differentiation occurring. Immediately after the lights come back on, however, the cells again undergo rapid protein synthesis and complete their differentiation. Previous studies have concluded that Volvox carteri discontinue protein synthesis during the dark phase due to regulation at the translational level and not the transcriptional level. Therefore, the inhibition of protein synthesis does not lie in the transfer of the protein coding sequence from DNA to mRNA, but rather in the transfer of this information from the mRNA to the ribosomes. My research examined this translational regulation to determine the factor(s) causing the discontinuation of protein synthesis during the dark phase. Evidence from other research further suggests that the control of translation lies in the initiation step rather than the elongation step. Eukaryotic initiation factors aid in the binding of the ribosomal subunits to the mRNA to initiate protein synthesis. It is known that initiation factors can be modified by phosphorylation, regulating their activity. Therefore, my study focused upon isolating some of these initiation factors in order to determine whether or not such modifications are responsible for the inhibition of dark phase protein synthesis in Volvox carteri.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The AFN1 gene is transiently expressed in germinating oat grains. As AFN1 is not expressed in dormant oat grains during imbibition, we hypothesize that AFN1 may be involved in stimulating the germination process. Sequence analysis of an AFN1 cDNA clone indicates that the AFN1 polypeptide is similar to a previously identified abscisic acid (ABA) glucosyl transferase. This suggests that AFN1 may be acting to glucosylate ABA, thereby inactivating it. As the hormone ABA is known to inhibit germination, ABA glucosylation/inactivation could lead to germination in grains expressing AFN1. To test this hypothesis, we have constructed an expression plasmid that encodes an MBP::AFN1 (maltose binding protein) fusion protein. E. coli cells carrying the expression plasmid were found to produce the MBP::AFN1 fusion protein as a substantial fraction of total protein. We are currently in the process of purifying the MBP::AFN1 fusion protein by affinity chromatography, so that it can be assayed for ABA glucosyl transferase activity. We also wish to test the effect of AFN1 gene expression during grain imbibition on the germination behavior of the grains. To this end, we have constructed plasmids for the overexpression and RNAi-based suppression of AFN1 in transgenic plants. These plasmids have been introduced into oat cells by particle bombardment and we are in the process of regenerating transgenic plants for study.