2 resultados para Quantification of Glutamate

em Digital Archives@Colby


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The photolytic phenanthrene-based precursors for both β-methoxycarbene and β-ethoxycarbene were synthesized with and without a deuterium label attached to the a carbon. The incorporation of this deuterium label allowed distinction between a 1, 2-H shift and a 1, 2-O shift pathway to the respective alkyl vinyl ether, without the influence of a primary kinetic isotope effect. Photolyses of these precursors gave rearrangement products of the expected β-alkoxycarbenes. In the case of β-methoxycarbene, no methyl vinyl ether was observed due to its volatility. However, the appearance of aldehyde peaks in the NMR spectra, from an apparent further rearrangement to acetaldehyde through an enol intermediate, indicated that a 1,2-H shift had occurred. Ethyl vinyl ether was isolated following the photolysis of the β-ethoxycarbene precursor. Quantification of the two pathways showed less than 2% undergoing an ethoxy shift to the ethyl vinyl ether. Yield experiments on this photolysis demonstrated a maximum yield of β-ethoxycarbene as 43%, though this decreased as the experiment continued. Computational work on the β-ethoxycarbene system indicates that the triplet scate is more stable than the singlet. In addition, the activation energy to the 1.2-H shift pathway is remarkably low and is clearly consistent with the observed overwhelming preference for this pathway in the experiment.