2 resultados para Protein Synthesis

em Digital Archives@Colby


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Volvox carteri, a multi-celled green algae, can grow synchronously given a sixteen hour light period followed by an eight hour dark period, a cycle which is repeated for a 48 hour growth cycle total. Near the end of each light period, reproductive cells divide rapidly resulting in the differentiation of ceIls. When the dark period begins, this differentiation stops and the cells remain dormant with little protein synthesis or differentiation occurring. Immediately after the lights come back on, however, the cells again undergo rapid protein synthesis and complete their differentiation. Previous studies have concluded that Volvox carteri discontinue protein synthesis during the dark phase due to regulation at the translational level and not the transcriptional level. Therefore, the inhibition of protein synthesis does not lie in the transfer of the protein coding sequence from DNA to mRNA, but rather in the transfer of this information from the mRNA to the ribosomes. My research examined this translational regulation to determine the factor(s) causing the discontinuation of protein synthesis during the dark phase. Evidence from other research further suggests that the control of translation lies in the initiation step rather than the elongation step. Eukaryotic initiation factors aid in the binding of the ribosomal subunits to the mRNA to initiate protein synthesis. It is known that initiation factors can be modified by phosphorylation, regulating their activity. Therefore, my study focused upon isolating some of these initiation factors in order to determine whether or not such modifications are responsible for the inhibition of dark phase protein synthesis in Volvox carteri.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 4.5S RNA molecule of Escherichia coli is essential to cell viability. It has been shown that depletion of this molecule inhibits protein synthesis, induces the heat shock response, and generally slows cell growth. The molecule has also been implicated in protein secretion, as in cells depleted of 4.5S RNA, an unsecreted precursor to ?-lactamase accumulates (pre-?-lactamase). A role in protein secretion is further supported by structural similarities with the 7S RNA molecule of eukaryotic SRP, specific binding to SRP54, and its homolog in E. coli, P48, and the ability of 7S RNA from certain archaebacteria to suppress 4.5S RNA depletion. In this study I have utilized strains with mutant forms of the 4.5S RNA genes in order to study the effect of altered 4.5S RNA on cell physiology. These strains have their mutant 4.55 RNA under the control of the tryptophan synthetic operon. Decreased growth rates, inhibited cell division, and altered protein synthesis all result from these mutations.