4 resultados para Positive displacement motors PDM

em Digital Archives@Colby


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Colby Green is a campus expansion project which began in October of 2003. The construction would result in three new buildings, additional parking, and an elliptical 75,000-squarefoot green southeast of Mayflower Hill Drive. There were also plans for the construction of three run-off management and sediment ponds below the green, to manage flooding of the green. Three drains in the green transport water to the three retaining ponds which slowly disperse water into the surrounding environment. The ponds were created by constructing earthen dams around the drain outlets. The dams are composed of soil, cobbles, and boulders procured from the surrounding excavation site. Unfortunately, earthen dams are susceptible to many types of erosion which result in their failure. In this case the potential for clay and silt from the underlying Presumpscot Formation to mix with the soil in the earthen dams raised concerns with regards to frost action. In order to monitor the surface displacement of the dams I drove 92 poles into the ground in 8 straight lines across the faces of the dams in the fall of 2005. I returned to the sites during and after the spring thaw of 2006, to check for any signs of movement resulting from frost-heave, surface creep, or any other form of mass wasting. Fortunately, there was no recordable sign of movement in the stakes across any of the retaining ponds. The dams appear to be functioning as designed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial isolates from natural sites with high toxic and heavy metal contamination more frequently contain determinants for resistance to antimicrobials. Natural strains were isolated from the ingesta and external slime of Salmo salar (Linnaeus, 1758) and Salvelinusjontinalis (Mitchell, 1814). Fish specimens were acquired from Casco Bay hatcheries, Casco, ME where there is no history of antibiotic use. Seventy-nine bacterial strains, including many well-documented salmonid commensals (an association from which the fish derives no benefit), were identified using 165 rRNA gene sequencing. Mercury resistant isolates were selected for initially on 25μM HgCI2. Strains were then grown at 20-24°C on Trypticase Soy Agar (TSA) plates containing 0-1000μM HgCl2 or 0-130μM Phenyl Mercuric Acetate (PMA). Mercury in the hatchery feed water due to ubiquitous non-point source deposition has selected for the mercury resistance observed in bacterial strains. Antibiotic resistance determinations, as measured by Minimum Inhibitory Concentration MIC) assays were performed on the 79 bacterial isolates using Sensititrel antimicrobial susceptibility panels. A positive linear correlation between the mercury (pMA and HgCl2) MIC's and antibiotic resistance for all observed strains was demonstrated. Conjugation experiments with Pseudomonas, Aeromonas, and Azomonas donors confirmed phenotypic transfer of penicillin and cephem resistances to Escherichia coli DH5a recipients. Conjugation experiments with Pseudomonas donors showed minimal transfer of tetracycline and minoglycoside resistances to Escherichia coli DH5a recipients. Our study suggests that the accumulation of antimicrobial resistances observed in these natural bacterial populations may be due to the indirect selective pressure exerted by environmental mercury.