2 resultados para Photodynamic inactivation
em Digital Archives@Colby
Resumo:
Abscisic acid (ABA) is an important phytohormone with regulatory roles in many physiological processes. ABA expression is induced by environmental stresses such as drought and it is known to be an inhibitor of seed germination. A wild oat (Avena fatua) called AFN1 has been hypothesized to initiate the early stages of germination as its mRNA accumulates in nondormant seed embryos during imbibition. The polypeptide sequence of AFN1 suggests that it is an ABA glucosyl transferase. Glucosylation by AFN1 and thereby inactivation of ABA could lead to seed germination. In order to understand the role of AFN1 in germination, an ample quantity of AFN1 polypeptide is needed to test for enzymatic ABA glucosylase activity. My work has been to overexpress recombinant AFN1containing a (His)6 tag using a pRSETC E.coli expression system followed by Purification of the AFN1 protein by means of a nickel-affinity column that bind to the (His)6 tag. Due to the insufficient yield of AFN1 fusion protein obtained with this procedure, another method using a pMAL-c2x vector is now being employed. The pMAL expression system provides a method for expressing and purifying protein by tagging proteins with maltose-binding protein (MBP). It is anticipated that MBP tag will be advantageous as it can make the fusion protein more soluble and thereby yield a larger quantity of protein. Currently, work is underway on the construction of pMAL/AFN1 plasmid.
Resumo:
The AFN1 gene is transiently expressed in germinating oat grains. As AFN1 is not expressed in dormant oat grains during imbibition, we hypothesize that AFN1 may be involved in stimulating the germination process. Sequence analysis of an AFN1 cDNA clone indicates that the AFN1 polypeptide is similar to a previously identified abscisic acid (ABA) glucosyl transferase. This suggests that AFN1 may be acting to glucosylate ABA, thereby inactivating it. As the hormone ABA is known to inhibit germination, ABA glucosylation/inactivation could lead to germination in grains expressing AFN1. To test this hypothesis, we have constructed an expression plasmid that encodes an MBP::AFN1 (maltose binding protein) fusion protein. E. coli cells carrying the expression plasmid were found to produce the MBP::AFN1 fusion protein as a substantial fraction of total protein. We are currently in the process of purifying the MBP::AFN1 fusion protein by affinity chromatography, so that it can be assayed for ABA glucosyl transferase activity. We also wish to test the effect of AFN1 gene expression during grain imbibition on the germination behavior of the grains. To this end, we have constructed plasmids for the overexpression and RNAi-based suppression of AFN1 in transgenic plants. These plasmids have been introduced into oat cells by particle bombardment and we are in the process of regenerating transgenic plants for study.