4 resultados para MOLECULE COLLISIONS
em Digital Archives@Colby
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1004/thumbnail.jpg
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1018/thumbnail.jpg
Resumo:
The 4.5S RNA molecule of Escherichia coli is essential to cell viability. It has been shown that depletion of this molecule inhibits protein synthesis, induces the heat shock response, and generally slows cell growth. The molecule has also been implicated in protein secretion, as in cells depleted of 4.5S RNA, an unsecreted precursor to ?-lactamase accumulates (pre-?-lactamase). A role in protein secretion is further supported by structural similarities with the 7S RNA molecule of eukaryotic SRP, specific binding to SRP54, and its homolog in E. coli, P48, and the ability of 7S RNA from certain archaebacteria to suppress 4.5S RNA depletion. In this study I have utilized strains with mutant forms of the 4.5S RNA genes in order to study the effect of altered 4.5S RNA on cell physiology. These strains have their mutant 4.55 RNA under the control of the tryptophan synthetic operon. Decreased growth rates, inhibited cell division, and altered protein synthesis all result from these mutations.
Resumo:
Moose (Alces alces) are a keystone herbivore in Maine. Because of the large number of rural roads in Maine, there is a high rate of moose-vehicle collisions (MVCs), which is increasing. On-road encounters with animals resulted in 231 fatalities in the United States in 1999. Because of the fatality of MVCs, it is important to know where they are most likely to occur. I used GIS analysis to estimate where future MVCs would occur, factoring in the variables of land cover suitability for moose, distance from water bodies, locations of past MVCs, and speed limits on the roads. I ran four different analyses, each one weighting the variables equally. I also ran a regression to determine if increasing road speed was associated with the increase in the number of MVCs per length of road. There was not a strong positive relationship between the number of MVCs per length of road and the speed limit, but it was interesting to note that there were more MVCs per length of road on 35mph and 40mph roads than on 45, 50, 55 or 65mph roads. Future research on MVCs would benefit from the inclusion of include moose population density and road traffic data.