3 resultados para Ethyl-cyanoacrylate

em Digital Archives@Colby


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1952, Dwyer and coworkers began testing a series of metal complexes for potential inhibition of cancer cell proliferation in animals.[l] The complexes tested were unsuitable for such studies due to their high toxicity. Therefore, no further work was done on the project. However, in 1965, Rosenberg and coworkers revisited the possibility of potential metal-based drugs. Serendipitously, they discovered that cis-diamminedichloroplatinum(lI) (cisplatin) inhibits cell division in E. coli.[2] Further studies of this and other platinum compounds revealed inhibition of tumor cell lines sarcoma 180 and leukemia LI2l0 in mice.[l] Cisplatin was approved by the Food and Drug Administration in 1970 as a chemical chemotherapeutic agent in the treatment of cancer. The drug has primarily been used in the treatment of testicular and ovarian cancers, although the powerful chemotherapeutic properties of the compound indicate use against a variety of other cancers.[3] The toxicity of this compound, however, warrants the development of other metal-based potential antitumor agents. The success of cisplatin, a transition-metal-based chemotherapeutic, opened the doors to a host of research on the antitumor effects of other transition-metal complexes. Beginning in the 1970s, researchers looked to rhodium for potential use in antitumor complexes. Dirhodium complexes with bridging equatorial ligands (Figure I) were the primary focus for this research. The overwhelming majority of these complexes were dirhodium(II) carboxylate complexes, containing two rhodium(II) centers, four equatorial ligands in a lantero formation around the metal center, and an axial ligand on either end. The family of complexes in Figure 1 will be referred to as dirhodium(II) carboxylate complexes. The dirhodium centers are each d? with a metal-metal bond between them. Although d? atoms are paramagnetic, the two unpaired electrons pair to make the complex diamagnetic. The basic formula of the dirhodium(lI) carboxylate complexes is Rh?(RCOO)?(L)? with R being methyl, ethyl, propyl, or butyl groups and L being water or the solvent in which the complex was crystalized. Of these dirbodium(II) carboxylate complexes, our research focuses on Rb la and two other similar complexes Rh2 and Rh3 (Figure 2). Rh2 is an activated form of Rhla, with four acetonitrile groups in place of two of the bidentate acetate ligands. Rh3 is similar to Rhla, with trifluoromethyl groups in place of the methyl groups on the acetate ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bicyclooxacalixarenes were synthesized in high yield via a selective, room temperature Sn Ar reaction of phluoroglucinol with 2,6-dichloropyridines. Functionality on the 2,6-dichloropyridioe was varied by changing the electron-withdrawing groups in the 3 and 5 positions (using chlorine, nitro groups, and cyano groups) and the side-chains in the 4-position (using ethyl, butyl, phenyl and ρ-tolyl groups). The resulting cage-like molecules were studied by X-ray crystallography and tested for metal complexation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photolytic phenanthrene-based precursors for both β-methoxycarbene and β-ethoxycarbene were synthesized with and without a deuterium label attached to the a carbon. The incorporation of this deuterium label allowed distinction between a 1, 2-H shift and a 1, 2-O shift pathway to the respective alkyl vinyl ether, without the influence of a primary kinetic isotope effect. Photolyses of these precursors gave rearrangement products of the expected β-alkoxycarbenes. In the case of β-methoxycarbene, no methyl vinyl ether was observed due to its volatility. However, the appearance of aldehyde peaks in the NMR spectra, from an apparent further rearrangement to acetaldehyde through an enol intermediate, indicated that a 1,2-H shift had occurred. Ethyl vinyl ether was isolated following the photolysis of the β-ethoxycarbene precursor. Quantification of the two pathways showed less than 2% undergoing an ethoxy shift to the ethyl vinyl ether. Yield experiments on this photolysis demonstrated a maximum yield of β-ethoxycarbene as 43%, though this decreased as the experiment continued. Computational work on the β-ethoxycarbene system indicates that the triplet scate is more stable than the singlet. In addition, the activation energy to the 1.2-H shift pathway is remarkably low and is clearly consistent with the observed overwhelming preference for this pathway in the experiment.