2 resultados para Biology, Genetics|Biology, Microbiology

em Digital Archives@Colby


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the development of the first antibiotics in the 1940’s, there has been widespread overuse in both clinical and agricultural applications. Antibiotic resistance has become a significant problem as a result of subsequent dissemination of antibiotics into the environment, and multiply-resistant strains of bacteria are now a major pathogenic threat. In this study eight separate strains of Flavobacterium responsible for recent disease outbreaks in fish hatcheries throughout Maine were collected and analyzed. All eight strains were found to be resistant to high levels of a number of different antibiotics, including those used for aquaculture as well as human chemotherapeutic applications. Flavobacterium isolates were also shown phenotypically to transfer antibiotic resistance determinants using a conjugation mating system in which Flavobacterium was the donor and Escherichia coli DH5- alpha was the recipient. This experiment suggests that it may be possible for Flavobacterium strains to transfer their multiple antibiotic resistance determinants to human pathogenic bacterial strains. Importantly, none of the hatcheries from which the Flavobacterium isolates were obtained had ever used antibiotics to treat their fish stock. It is possible that there is another selective agent responsible for the development of antibiotic resistance in the absence of antibiotic pressure. Mercury is one possible candidate, as all of the strains tested were resistant to mercuric chloride and it is known that genes encoding antibiotic resistance can be carried on the same mobile genetic elements that encode for mercury resistance. Preliminary data also suggest that the majority of the Flavobacterium isolates contain genes for mercuric ion reduction, which would confirm the mercury resistance genotype.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pollinator visitation rates over the life of a flower are determined by pollinator abundance and floral longevity. If flowers are not visited frequently enough, pollen limitation may occur, favoring the evolution of self-compatibility (SC). In plant species with varying SC levels, central populations often are self-incompatible (SI) and peripheral populations are SC. Witheringia solanacea (Solanaceae) is a species that follows this trend with the exception of one population in the Monteverde Cloud Forest Reserve, which is peripheral yet SI. I investigated this population using multiple techniques including floral bagging, pollinator observations, microsatellite analysis, and floral longevity manipulations. My results confirmed the self-incompatibility of the Monteverde population and indicated low but perhaps adequate rates of pollinator visitation per flower per hour. I found reduced genetic diversity at Monteverde and gene flow occurring unidirectionally from San Luis (a central population) to Monteverde. In the greenhouse, there was more of an effect of male than female function on floral longevity, but the largest differences were environmental. Flowers stayed open substantially longer when cool, cloudy weather was simulated and shorter when conditions were hot and sunny. The results indicate that the Monteverde population of W. solanacea is SI because 1) it is unable to maximize its fitness due to gene flow from San Luis and its relatively recent colonization of the area and 2) pollen limitation may not be severe because of supplemental pollinator availability from other Witheringia species in the area and increased floral longevities due to cool and cloudy conditions.