540 resultados para Colby professors
Resumo:
Frieda Levine Miller was born to William and Sarah Ida Levine on March 26, 1896 and died August 24, 1990. The scrapbook contains family memories, death certificate, eulogies, newspaper clippings, family photographs, a high school graduation program, letters, and announcement of the marriage of her daughter Glenyce.
Resumo:
This scrapbook contains photographs and family memories of the big Levine family house on Ticonic Street, of the Levine family "camp," of going to temple, and of various members of the family.
Resumo:
Percy "Pacy" Jerome Levine, brother of Ludy Levine, was born on April 16, 1905 to William and Sarah Ida Levine. He died on November 1, 1996. The scrapbook includes family memorials, a eulogy by Rabbi Krinsky, news clippings, photographs, and a few pieces of official correspondence.
Resumo:
The Levine family held an extensive reunion during the Summer of 2009 during which 29 DVDs of raw material were recorded for use in the creation of a Levine family mini-documentary. Many of these DVDs contain oral history interviews conducted by Wendy Miller, one of the organizers of the reunion. Although these interviews were not designed for historical research, they contain valuable historical information. Some of the family members interviewed include: Ben Arnon (4/5), Marjorie, Stephen, and Michael Kaplan (8), Glenyce Miller Kaplan (starts in 15, continues in 9; separate interview in 13), Burt, Phyllis, and Louis Shiro (9) [Burt Shiro also in 26/27], Myrt and Gordon Wolman (9), Ted and Billy Alfond (10), Barbara and Joan Alfond (10), Susan and Peter Alfond (10), Alice Emory [caregiver for Bibby] (11), Eric Bloom and Stu Cushner (11), Saralee Kaplan Bloom (11), Sarah Miller Arnon (12), Kayla and Jenna Cushner (12), Josh Soros and Eliana Miller-Kaplan (12), Sarah, Wendy, and Julie Miller (starts in 12, continues in 14), Bill Shutzer (13), Maschia and Glicka Kaplan, Sharon Kushner, Dan Hood (13), Gene, Alex, Kate Cohen (14), Ben, Jeremy, Joselyn Arnon (14), Wendy and Julie Miller at the store (15), and Eric Bloom (15).
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
In industrial polymer and synthetic rubber production facilities, workers are exposed to 1,3-butadiene. This compound is converted in vivo to 1,2,3,4-diepoxybutane (DEB) and has been linked to increased incidences of cancer in these individuals. Carcinogenesis has been attributed to formation of DEB induced DNA interstrand cross-links. Previous studies have demonstrated that DEB cross-links deoxyguanosine residues within 5'-GNC sequences in synthetic DNA, in restriction fragments, and in defined sequence nucleosomes. The current study utilized the polymerase chain reaction (PCR) to examine DEB damage frequencies within nuclear genes, found within "open" regions of chromatin, as compared to regions of unexpressed sequence that reside in tightly packed, "closed" chromatin, to more closely model DEB reactivity in vivo. These initial studies have been performed in chicken liver homogenates. Preliminarily, we have found a dose-dependent DEB lesion-forming response within "open" chromatin. DEB appears to have little-to-no effect upon regions of "closed" chromatin.
Resumo:
Diepoxybutane (DEB), a known industrial carcinogen, reacts with DNA primarily at the N7 position of deoxyguanosine residues and creates interstrand cross-links at the sequence 5'-GNC. Since N7-N7 cross-links cause DNA to fragment upon heating, quantative polymerase chain reaction (QPCR) is being used in this experiment to measure the amount of DEB damage (lesion frequency) with three different targets-mitochondrial (unpackaged), open chromatin region, and closed chromatin region. Initial measurements of DEB damage within these three targets were not consistent because the template DNA was not the limiting reagent in the PCR. Follow-up PCR trials using a limiting amount of DNA are still in progress although initial experimentation looks promising. Sequencing of these three targets to confirm the primer targets has only been successfully performed for the closed chromatin target and does not match the sequence from NIH used to design that primer pair. Further sequencing trials need to be conducted on all three targets to assure that a mitochondrial, open chromatin, and closed chromatin region are actually being amplified in this experimental series.
Resumo:
Bicyclooxacalixarenes were synthesized in high yield via a selective, room temperature Sn Ar reaction of phluoroglucinol with 2,6-dichloropyridines. Functionality on the 2,6-dichloropyridioe was varied by changing the electron-withdrawing groups in the 3 and 5 positions (using chlorine, nitro groups, and cyano groups) and the side-chains in the 4-position (using ethyl, butyl, phenyl and ρ-tolyl groups). The resulting cage-like molecules were studied by X-ray crystallography and tested for metal complexation.
Resumo:
The value of a comparative study of the two conflicts stems from a remarkable similarity in the structural organization of political violence by its most influential practitioners: the IRA and Hamas. At the core, I have merely tried my best to approach a beguiling question in a fresh, dynamic way. The stultifying discourse of conflict that serves as lingua franca for the Israeli‐Palestinian issue has largely reduced strategic debate to how best the conflict can be managed – not ended. Prime Minister Benjamin Netanyahu’s focus on “economic peace” and unwillingness to commit to a two‐state solution – the consensus that has governed peacemaking for decades – belies such thinking. The Clinton Administration’s cadre of Mideast negotiators operated amidst the most rapid institutionalization of Palestinian democracy in history ‐ yet remained obsessed with Israeli‐Arab “confidence‐building” measures, doing little to legitimize the gains of Oslo. So long as Palestinians continue to view the creation of Israel as “al‐Nakba” – the catastrophe – whilst successive Israeli governments refuse to grant their aspirations any legitimacy, there can be no progress. Peace requires empathy, a substantial compromise in the context of internecine conflict. The “long war” both conflicts have become mandates an equally expansive, broad‐based and labor‐intensive approach – a demanding process that can only be called The Long Game.
Resumo:
The Millard Research Laboratory is interested in the cytotoxic mechanisms of the bifunctional alkylators diepoxybutane (DEB), epichlorohydrin (ECH), and (1-chloroethenyl) oxirane (COX). Studies performed in the laboratory examine the dual nature of these DNA cross-linking compounds that can act as carcinogens or anti-cancer agents. The mechanisms through which these compounds induce cell death are explored in this study. Cells either undergo cell death due to necrosis or apoptosis. HL-60 cells were treated with varying concentrations of DEB, ECH, or COX. A caspase 3/7 assay was used to test for induction of apoptosis in the treated cells at varying incubation times. It was concluded that DEB induces apoptosis in HL-60 cells treated with 100 μM for 24 hours. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was then used to explore the changes in gene expression of various genes involved in apoptosis signaling. The results were inconclusive as to specific genes involved in DEB induced apoptosis, but the data does suggest that apoptosis is induced by a mitochondrial-mediated apoptosis signaling pathway.
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
The photolytic phenanthrene-based precursors for both β-methoxycarbene and β-ethoxycarbene were synthesized with and without a deuterium label attached to the a carbon. The incorporation of this deuterium label allowed distinction between a 1, 2-H shift and a 1, 2-O shift pathway to the respective alkyl vinyl ether, without the influence of a primary kinetic isotope effect. Photolyses of these precursors gave rearrangement products of the expected β-alkoxycarbenes. In the case of β-methoxycarbene, no methyl vinyl ether was observed due to its volatility. However, the appearance of aldehyde peaks in the NMR spectra, from an apparent further rearrangement to acetaldehyde through an enol intermediate, indicated that a 1,2-H shift had occurred. Ethyl vinyl ether was isolated following the photolysis of the β-ethoxycarbene precursor. Quantification of the two pathways showed less than 2% undergoing an ethoxy shift to the ethyl vinyl ether. Yield experiments on this photolysis demonstrated a maximum yield of β-ethoxycarbene as 43%, though this decreased as the experiment continued. Computational work on the β-ethoxycarbene system indicates that the triplet scate is more stable than the singlet. In addition, the activation energy to the 1.2-H shift pathway is remarkably low and is clearly consistent with the observed overwhelming preference for this pathway in the experiment.
Resumo:
Bacterial isolates from natural sites with high toxic and heavy metal contamination more frequently contain determinants for resistance to antimicrobials. Natural strains were isolated from the ingesta and external slime of Salmo salar (Linnaeus, 1758) and Salvelinusjontinalis (Mitchell, 1814). Fish specimens were acquired from Casco Bay hatcheries, Casco, ME where there is no history of antibiotic use. Seventy-nine bacterial strains, including many well-documented salmonid commensals (an association from which the fish derives no benefit), were identified using 165 rRNA gene sequencing. Mercury resistant isolates were selected for initially on 25μM HgCI2. Strains were then grown at 20-24°C on Trypticase Soy Agar (TSA) plates containing 0-1000μM HgCl2 or 0-130μM Phenyl Mercuric Acetate (PMA). Mercury in the hatchery feed water due to ubiquitous non-point source deposition has selected for the mercury resistance observed in bacterial strains. Antibiotic resistance determinations, as measured by Minimum Inhibitory Concentration MIC) assays were performed on the 79 bacterial isolates using Sensititrel antimicrobial susceptibility panels. A positive linear correlation between the mercury (pMA and HgCl2) MIC's and antibiotic resistance for all observed strains was demonstrated. Conjugation experiments with Pseudomonas, Aeromonas, and Azomonas donors confirmed phenotypic transfer of penicillin and cephem resistances to Escherichia coli DH5a recipients. Conjugation experiments with Pseudomonas donors showed minimal transfer of tetracycline and minoglycoside resistances to Escherichia coli DH5a recipients. Our study suggests that the accumulation of antimicrobial resistances observed in these natural bacterial populations may be due to the indirect selective pressure exerted by environmental mercury.