3 resultados para self-executing order - construction
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.
Resumo:
A sound and complete first-order goal-oriented sequent-type calculus is developed with ``large-block'' inference rules. In particular, the calculus contains formal analogues of such natural proof-search techniques as handling definitions and applying auxiliary propositions.
Resumo:
In order to facilitate the development of agent-based software, several agent programming languages and architectures, have been created. Plans in these architectures are often self-contained procedures with an associated triggering event and a context condition, while any further information about the consequences of executing a plan is absent. However, agents designed using such an approach have limited flexibility at runtime, and rely on the designer’s ability to foresee all relevant situations an agent might have to handle. In order to overcome this limitation, we have created AgentSpeak(PL), an interpreter capable of performing state-space planning to generate new high-level plans. As the planning module creates new plans, the plan library is expanded, improving performance over time. However, for new plans to be useful in the long run, it is critical that the context condition associated with new plans is carefully generated. In this paper we describe a plan reuse technique aimed at improving an agent’s runtime performance by deriving optimal context conditions for new plans, allowing an agent to reuse generated plans as much as possible.