10 resultados para open service system
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The Grid is a large-scale computer system that is capable of coordinating resources that are not subject to centralised control, whilst using standard, open, general-purpose protocols and interfaces, and delivering non-trivial qualities of service. In this chapter, we argue that Grid applications very strongly suggest the use of agent-based computing, and we review key uses of agent technologies in Grids: user agents, able to customize and personalise data; agent communication languages offering a generic and portable communication medium; and negotiation allowing multiple distributed entities to reach service level agreements. In the second part of the chapter, we focus on Grid service discovery, which we have identified as a prime candidate for use of agent technologies: we show that Grid-services need to be located via personalised, semantic-rich discovery processes, which must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. We present UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. The outcome is a flexible service registry which is compatible with existing standards and also provides metadata-enhanced service discovery.
Resumo:
One of the most pervasive classes of services needed to support e-Science applications are those responsible for the discovery of resources. We have developed a solution to the problem of service discovery in a Semantic Web/Grid setting. We do this in the context of bioinformatics, which is the use of computational and mathematical techniques to store, manage, and analyse the data from molecular biology in order to answer questions about biological phenomena. Our specific application is myGrid (www.mygrid.org.uk) that is developing open source, service-based middleware upon which bioinformatics applications can be built. myGrid is specifically targeted at developing open source high-level service Grid middleware for bioinformatics.
Resumo:
One of the most pervasive classes of services needed to support e-Science applications are those responsible for the discovery of resources. We have developed a solution to the problem of service discovery in a Semantic Web/Grid setting. We do this in the context of bioinformatics, which is the use of computational and mathematical techniques to store, manage, and analyse the data from molecular biology in order to answer questions about biological phenomena. Our specific application is myGrid (http: //www.mygrid.org.uk) that is developing open source, service-based middleware upon which bioin- formatics applications can be built. myGrid is specif- ically targeted at developing open source high-level service Grid middleware for bioinformatics.
Resumo:
Agent-oriented software engineering (AOSE) is a promising approach to developing applications for dynamic open systems. If well developed, these applications can be opportunistic, taking advantage of services implemented by other developers at appropriate times. However, methodologies are needed to aid the development of systems that are both flexible enough to be opportunistic and tightly defined by the application requirements. In this paper, we investigate how developers can choose the coordination mechanisms of agents so that the agents will best fulfil application requirements in an open system.
Resumo:
Service discovery in large scale, open distributed systems is difficult because of the need to filter out services suitable to the task at hand from a potentially huge pool of possibilities. Semantic descriptions have been advocated as the key to expressive service discovery, but the most commonly used service descriptions and registry protocols do not support such descriptions in a general manner. In this paper, we present a protocol, its implementation and an API for registering semantic service descriptions and other task/user-specific metadata, and for discovering services according to these. Our approach is based on a mechanism for attaching structured and unstructured metadata, which we show to be applicable to multiple registry technologies. The result is an extremely flexible service registry that can be the basis of a sophisticated semantically-enhanced service discovery engine, an essential component of a Semantic Grid.
Resumo:
Recent work has begun exploring the characterization and utilization of provenance in systems based on the Service Oriented Architecture (such as Web Services and Grid based environments). One of the salient issues related to provenance use within any given system is its security. In a broad sense, security requirements arise within any data archival and retrieval system, however provenance presents unique requirements of its own. These requirements are additionally dependent on the architectural and environmental context that a provenance system operates in. We seek to analyze the security considerations pertaining to a Service Oriented Architecture based provenance system. Towards this end, we describe the components of such a system and illustrate the security considerations that arise within it. Concurrently, we outline possible approaches to address them.
Resumo:
Architectural description languages (ADLs) are used to specify a high-level, compositional view of a software application, specifying how a system is to be composed from coarse-grain components. ADLs usually come equipped with a formal dynamic semantics, facilitating specification and analysis of distributed and event-based systems. In this paper, we describe the TrustME, an ADL framework that provides both a process and a structural view of web service-based systems. We use Petri-net descriptions to give a dynamic view of business workflow for web service collaboration. We adapt the approach of Schmidt to define a form of Meyer's design-by-contract for configuring workflow architectures. This serves as a configuration-level means of constructing safer, more robust systems.
Resumo:
The open provenance architecture (OPA) approach to the challenge was distinct in several regards. In particular, it is based on an open, well-defined data model and architecture, allowing different components of the challenge workflow to independently record documentation, and for the workflow to be executed in any environment. Another noticeable feature is that we distinguish between the data recorded about what has occurred, emphprocess documentation, and the emphprovenance of a data item, which is all that caused the data item to be as it is and is obtained as the result of a query over process documentation. This distinction allows us to tailor the system to separately best address the requirements of recording and querying documentation. Other notable features include the explicit recording of causal relationships between both events and data items, an interaction-based world model, intensional definition of data items in queries rather than relying on explicit naming mechanisms, and emphstyling of documentation to support non-functional application requirements such as reducing storage costs or ensuring privacy of data. In this paper we describe how each of these features aid us in answering the challenge provenance queries.