8 resultados para multimodel inference
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
Many solutions to AI problems require the task to be represented in one of a multitude of rigorous mathematical formalisms. The construction of such mathematical models forms a difficult problem which is often left to the user of the problem solver. This void between problem solvers and the problems is studied by the eclectic field of automated modelling. Within this field, compositional modelling, a knowledge-based methodology for system modelling, has established itself as a leading approach. In general, a compositional modeller organises knowledge in a structure of composable fragments that relate to particular system components or processes. Its embedded inference mechanism chooses the appropriate fragments with respect to a given problem, instantiates and assembles them into a consistent system model. Many different types of compositional modeller exist, however, with significant differences in their knowledge representation and approach to inference. This paper examines compositional modelling. It presents a general framework for building and analysing compositional modellers. Based on this framework, a number of influential compositional modellers are examined and compared. The paper also identifies the strengths and weaknesses of compositional modelling and discusses some typical applications.
Resumo:
The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.
Resumo:
For first-order Horn clauses without equality, resolution is complete with an arbitrary selection of a single literal in each clause [dN 96]. Here we extend this result to the case of clauses with equality for superposition-based inference systems. Our result is a generalization of the result given in [BG 01]. We answer their question about the completeness of a superposition-based system for general clauses with an arbitrary selection strategy, provided there exists a refutation without applications of the factoring inference rule.
Resumo:
A sound and complete first-order goal-oriented sequent-type calculus is developed with ``large-block'' inference rules. In particular, the calculus contains formal analogues of such natural proof-search techniques as handling definitions and applying auxiliary propositions.
Resumo:
Basic information theory is used to analyse the amount of confidential information which may be leaked by programs written in a very simple imperative language. In particular, a detailed analysis is given of the possible leakage due to equality tests and if statements. The analysis is presented as a set of syntax-directed inference rules and can readily be automated.