4 resultados para high-order reasoning
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
Very large scale computations are now becoming routinely used as a methodology to undertake scientific research. In this context, `provenance systems' are regarded as the equivalent of the scientist's logbook for in silico experimentation: provenance captures the documentation of the process that led to some result. Using a protein compressibility analysis application, we derive a set of generic use cases for a provenance system. In order to support these, we address the following fundamental questions: what is provenance? how to record it? what is the performance impact for grid execution? what is the performance of reasoning? In doing so, we define a technologyindependent notion of provenance that captures interactions between components, internal component information and grouping of interactions, so as to allow us to analyse and reason about the execution of scientific processes. In order to support persistent provenance in heterogeneous applications, we introduce a separate provenance store, in which provenance documentation can be stored, archived and queried independently of the technology used to run the application. Through a series of practical tests, we evaluate the performance impact of such a provenance system. In summary, we demonstrate that provenance recording overhead of our prototype system remains under 10% of execution time, and we show that the recorded information successfully supports our use cases in a performant manner.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
Users are facing an increasing challenge of managing information and being available anytime anywhere, as the web exponentially grows. As a consequence, assisting them in their routine tasks has become a relevant issue to be addressed. In this paper, we introduce a software framework that supports the development of Personal Assistance Software (PAS). It relies on the idea of exposing a high level user model in order to increase user trust in the task delegation process as well as empowering them to manage it. The framework provides a synchronization mechanism that is responsible for dynamically adapting an underlying BDI agent-based running implementation in order to keep this high-level view of user customizations consistent with it.