6 resultados para growing domain
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The practitioners of bioinformatics require increasing sophistication from their software tools to take into account the particular characteristics that make their domain complex. For example, there is a great variation of experience of researchers, from novices who would like guidance from experts in the best resources to use to experts that wish to take greater management control of the tools used in their experiments. Also, the range of available, and conflicting, data formats is growing and there is a desire to automate the many trivial manual stages of in-silico experiments. Agent-oriented software development is one approach to tackling the design of complex applications. In this paper, we argue that, in fact, agent-oriented development is a particularly well-suited approach to developing bioinformatics tools that take into account the wider domain characteristics. To illustrate this, we design a data curation tool, which manages the format of experimental data, extend it to better account for the extra requirements placed by the domain characteristics, and show how the characteristics lead to a system well suited to an agent-oriented view.
Resumo:
The practitioners of bioinformatics require increasing sophistication from their software tools to take into account the particular characteristics that make their domain complex. For example, there is a great variation of experience of researchers, from novices who would like guidance from experts in the best resources to use to experts that wish to take greater management control of the tools used in their experiments. Also, the range of available, and conflicting, data formats is growing and there is a desire to automate the many trivial manual stages of in-silico experiments. Agent-oriented software development is one approach to tackling the design of complex applications. In this paper, we argue that, in fact, agent-oriented development is a particularly well-suited approach to developing bioinformatics tools that take into account the wider domain characteristics. To illustrate this, we design a data curation tool, which manages the format of experimental data, extend it to better account for the extra requirements placed by the domain characteristics, and show how the characteristics lead to a system well suited to an agent-oriented view.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
In the domain of aerospace aftermarkets, which often has long supply chains that feed into the maintenance of aircraft, contracts are used to establish agreements between aircraft operators and maintenance suppliers. However, violations at the bottom of the supply chain (part suppliers) can easily cascade to the top (aircraft operators), making it difficult to determine the source of the violation, and seek to address it. In this context, we have developed a global monitoring architecture that ensures the detection of norm violations and generates explanations for the origin of violations. In this paper, we describe the implementation and deployment of a global monitor in the aerospace domain of [8] and show how it generates explanations for violations within the maintenance supply chain. We show how these explanations can be used not only to detect violations at runtime, but also to uncover potential problems in contracts before their deployment, thus improving them.