6 resultados para enterprise grid computing
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
MyGrid is an e-Science Grid project that aims to help biologists and bioinformaticians to perform workflow-based in silico experiments, and help them to automate the management of such workflows through personalisation, notification of change and publication of experiments. In this paper, we describe the architecture of myGrid and how it will be used by the scientist. We then show how myGrid can benefit from agents technologies. We have identified three key uses of agent technologies in myGrid: user agents, able to customize and personalise data, agent communication languages offering a generic and portable communication medium, and negotiation allowing multiple distributed entities to reach service level agreements.
Resumo:
In e-Science experiments, it is vital to record the experimental process for later use such as in interpreting results, verifying that the correct process took place or tracing where data came from. The process that led to some data is called the provenance of that data, and a provenance architecture is the software architecture for a system that will provide the necessary functionality to record, store and use process documentation. However, there has been little principled analysis of what is actually required of a provenance architecture, so it is impossible to determine the functionality they would ideally support. In this paper, we present use cases for a provenance architecture from current experiments in biology, chemistry, physics and computer science, and analyse the use cases to determine the technical requirements of a generic, technology and application-independent architecture. We propose an architecture that meets these requirements and evaluate a preliminary implementation by attempting to realise two of the use cases.
Resumo:
Architectural description languages (ADLs) are used to specify high-level, compositional view of a software application. ADLs usually come equipped with a rigourous state-transition style semantics, facilitating specification and analysis of distributed and event-based systems. However, enterprise system architectures built upon newer middleware (implementations of Java’s EJB specification, or Microsoft’s COM+/ .NET) require additional expressive power from an ADL. The TrustME ADL is designed to meet this need. In this paper, we describe several aspects of TrustME that facilitate specification and anlysis of middleware-based architectures for the enterprise.
Resumo:
The Grid is a large-scale computer system that is capable of coordinating resources that are not subject to centralised control, whilst using standard, open, general-purpose protocols and interfaces, and delivering non-trivial qualities of service. In this chapter, we argue that Grid applications very strongly suggest the use of agent-based computing, and we review key uses of agent technologies in Grids: user agents, able to customize and personalise data; agent communication languages offering a generic and portable communication medium; and negotiation allowing multiple distributed entities to reach service level agreements. In the second part of the chapter, we focus on Grid service discovery, which we have identified as a prime candidate for use of agent technologies: we show that Grid-services need to be located via personalised, semantic-rich discovery processes, which must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. We present UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. The outcome is a flexible service registry which is compatible with existing standards and also provides metadata-enhanced service discovery.