2 resultados para counterfactual causal model
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The open provenance architecture (OPA) approach to the challenge was distinct in several regards. In particular, it is based on an open, well-defined data model and architecture, allowing different components of the challenge workflow to independently record documentation, and for the workflow to be executed in any environment. Another noticeable feature is that we distinguish between the data recorded about what has occurred, emphprocess documentation, and the emphprovenance of a data item, which is all that caused the data item to be as it is and is obtained as the result of a query over process documentation. This distinction allows us to tailor the system to separately best address the requirements of recording and querying documentation. Other notable features include the explicit recording of causal relationships between both events and data items, an interaction-based world model, intensional definition of data items in queries rather than relying on explicit naming mechanisms, and emphstyling of documentation to support non-functional application requirements such as reducing storage costs or ensuring privacy of data. In this paper we describe how each of these features aid us in answering the challenge provenance queries.
Resumo:
A description of a data item's provenance can be provided in dierent forms, and which form is best depends on the intended use of that description. Because of this, dierent communities have made quite distinct underlying assumptions in their models for electronically representing provenance. Approaches deriving from the library and archiving communities emphasise agreed vocabulary by which resources can be described and, in particular, assert their attribution (who created the resource, who modied it, where it was stored etc.) The primary purpose here is to provide intuitive metadata by which users can search for and index resources. In comparison, models for representing the results of scientific workflows have been developed with the assumption that each event or piece of intermediary data in a process' execution can and should be documented, to give a full account of the experiment undertaken. These occurrences are connected together by stating where one derived from, triggered, or otherwise caused another, and so form a causal graph. Mapping between the two approaches would be benecial in integrating systems and exploiting the strengths of each. In this paper, we specify such a mapping between Dublin Core and the Open Provenance Model. We further explain the technical issues to overcome and the rationale behind the approach, to allow the same method to apply in mapping similar schemes.