7 resultados para computer systems
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The Open Provenance Model is a model of provenance that is designed to meet the following requirements: (1) To allow provenance information to be exchanged between systems, by means of a compatibility layer based on a shared provenance model. (2) To allow developers to build and share tools that operate on such a provenance model. (3) To define provenance in a precise, technology-agnostic manner. (4) To support a digital representation of provenance for any 'thing', whether produced by computer systems or not. (5) To allow multiple levels of description to coexist. (6) To define a core set of rules that identify the valid inferences that can be made on provenance representation. This document contains the specification of the Open Provenance Model (v1.1) resulting from a community-effort to achieve inter-operability in the Provenance Challenge series.
Resumo:
A description of a data item's provenance can be provided in dierent forms, and which form is best depends on the intended use of that description. Because of this, dierent communities have made quite distinct underlying assumptions in their models for electronically representing provenance. Approaches deriving from the library and archiving communities emphasise agreed vocabulary by which resources can be described and, in particular, assert their attribution (who created the resource, who modied it, where it was stored etc.) The primary purpose here is to provide intuitive metadata by which users can search for and index resources. In comparison, models for representing the results of scientific workflows have been developed with the assumption that each event or piece of intermediary data in a process' execution can and should be documented, to give a full account of the experiment undertaken. These occurrences are connected together by stating where one derived from, triggered, or otherwise caused another, and so form a causal graph. Mapping between the two approaches would be benecial in integrating systems and exploiting the strengths of each. In this paper, we specify such a mapping between Dublin Core and the Open Provenance Model. We further explain the technical issues to overcome and the rationale behind the approach, to allow the same method to apply in mapping similar schemes.
Resumo:
Mirroring the paper versions exchanged between businesses today, electronic contracts offer the possibility of dynamic, automatic creation and enforcement of restrictions and compulsions on agent behaviour that are designed to ensure business objectives are met. However, where there are many contracts within a particular application, it can be difficult to determine whether the system can reliably fulfil them all; computer-parsable electronic contracts may allow such verification to be automated. In this paper, we describe a conceptual framework and architecture specification in which normative business contracts can be electronically represented, verified, established, renewed, etc. In particular, we aim to allow systems containing multiple contracts to be checked for conflicts and violations of business objectives. We illustrate the framework and architecture with an aerospace example.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, and may be encoded in electronic contracts in order to specify the obliged, permitted and prohibited behaviours of agents that are signatories to such contracts. Enactment and management of electronic contracts thus enables the use of regulatory mechanisms to ensure that agent behaviours comply with the encoded norms. To facilitate such mechanisms requires monitoring in order to detect and explain violation of norms. In this paper we propose a framework for monitoring that is to be implemented and integrated into a suite of contract enactment and management tools. The framework adopts a non-intrusive approach to monitoring, whereby the states of a contract with respect to its contained norms can be inferred on the basis of messages exchanged. Specifically, the framework deploys agents that observe messages sent between contract signatories, where these messages correspond to agent behaviours and therefore indicate whether norms are, or are in danger of, being violated.