8 resultados para causal representation
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
This paper proposes an efficient pattern extraction algorithm that can be applied on melodic sequences that are represented as strings of abstract intervallic symbols; the melodic representation introduces special “binary don’t care” symbols for intervals that may belong to two partially overlapping intervallic categories. As a special case the well established “step–leap” representation is examined. In the step–leap representation, each melodic diatonic interval is classified as a step (±s), a leap (±l) or a unison (u). Binary don’t care symbols are used to represent the possible overlapping between the various abstract categories e.g. *=s, *=l and #=-s, #=-l. We propose an O(n+d(n-d)+z)-time algorithm for computing all maximal-pairs in a given sequence x=x[1..n], where x contains d occurrences of binary don’t cares and z is the number of reported maximal-pairs.
A New Representation And Crossover Operator For Search-based Optimization Of Software Modularization
A New Representation And Crossover Operator For Search-based Optimization Of Software Modularization
Resumo:
This paper proposes an efficient pattern extraction algorithm that can be applied on melodic sequences that are represented as strings of abstract intervallic symbols; the melodic representation introduces special “binary don’t care” symbols for intervals that may belong to two partially overlapping intervallic categories. As a special case the well established “step–leap” representation is examined. In the step–leap representation, each melodic diatonic interval is classified as a step (±s), a leap (±l) or a unison (u). Binary don’t care symbols are used to represent the possible overlapping between the various abstract categories e.g. *=s, *=l and #=-s, #=-l. We propose an O(n+d(n-d)+z)-time algorithm for computing all maximal-pairs in a given sequence x=x[1..n], where x contains d occurrences of binary don’t cares and z is the number of reported maximal-pairs.
Resumo:
The open provenance architecture (OPA) approach to the challenge was distinct in several regards. In particular, it is based on an open, well-defined data model and architecture, allowing different components of the challenge workflow to independently record documentation, and for the workflow to be executed in any environment. Another noticeable feature is that we distinguish between the data recorded about what has occurred, emphprocess documentation, and the emphprovenance of a data item, which is all that caused the data item to be as it is and is obtained as the result of a query over process documentation. This distinction allows us to tailor the system to separately best address the requirements of recording and querying documentation. Other notable features include the explicit recording of causal relationships between both events and data items, an interaction-based world model, intensional definition of data items in queries rather than relying on explicit naming mechanisms, and emphstyling of documentation to support non-functional application requirements such as reducing storage costs or ensuring privacy of data. In this paper we describe how each of these features aid us in answering the challenge provenance queries.