8 resultados para autonomous regions
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.
Resumo:
A system built in terms of autonomous agents may require even greater correctness assurance than one which is merely reacting to the immediate control of its users. Agents make substantial decisions for themselves, so thorough testing is an important consideration. However, autonomy also makes testing harder; by their nature, autonomous agents may react in different ways to the same inputs over time, because, for instance they have changeable goals and knowledge. For this reason, we argue that testing of autonomous agents requires a procedure that caters for a wide range of test case contexts, and that can search for the most demanding of these test cases, even when they are not apparent to the agents’ developers. In this paper, we address this problem, introducing and evaluating an approach to testing autonomous agents that uses evolutionary optimization to generate demanding test cases.