2 resultados para Which-way experiments

em Department of Computer Science E-Repository - King's College London, Strand, London


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The requirement for Grid middleware to be largely transparent to individual users and at the same time act in accordance with their personal needs is a difficult challenge. In e-science scenarios, users cannot be repeatedly interrogated for each operational decision made when enacting experiments on the Grid. It is thus important to specify and enforce policies that enable the environment to be configured to take user preferences into account automatically. In particular, we need to consider the context in which these policies are applied, because decisions are based not only on the rules of the policy but also on the current state of the system. Consideration of context is explicitly addressed, in the agent perspective, when deciding how to balance the achievement of goals and reaction to the environment. One commonly-applied abstraction that balances reaction to multiple events with context-based reasoning in the way suggested by our requirements is the belief-desire-intention (BDI) architecture, which has proven successful in many applications. In this paper, we argue that BDI is an appropriate model for policy enforcement, and describe the application of BDI to policy enforcement in personalising Grid service discovery. We show how this has been implemented in the myGrid registry to provide bioinformaticians with control over the services returned to them by the service discovery process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As scientific workflows and the data they operate on, grow in size and complexity, the task of defining how those workflows should execute (which resources to use, where the resources must be in readiness for processing etc.) becomes proportionally more difficult. While "workflow compilers", such as Pegasus, reduce this burden, a further problem arises: since specifying details of execution is now automatic, a workflow's results are harder to interpret, as they are partly due to specifics of execution. By automating steps between the experiment design and its results, we lose the connection between them, hindering interpretation of results. To reconnect the scientific data with the original experiment, we argue that scientists should have access to the full provenance of their data, including not only parameters, inputs and intermediary data, but also the abstract experiment, refined into a concrete execution by the "workflow compiler". In this paper, we describe preliminary work on adapting Pegasus to capture the process of workflow refinement in the PASOA provenance system.