2 resultados para User interest
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
It is rare for data's history to include computational processes alone. Even when software generates data, users ultimately decide to execute software procedures, choose their configuration and inputs, reconfigure, halt and restart processes, and so on. Understanding the provenance of data thus involves understanding the reasoning of users behind these decisions, but demanding that users explicitly document decisions could be intrusive if implemented naively, and impractical in some cases. In this paper, therefore, we explore an approach to transparently deriving the provenance of user decisions at query time. The user reasoning is simulated, and if the result of the simulation matches the documented decision, the simulation is taken to approximate the actual reasoning. The plausibility of this approach requires that the simulation mirror human decision -making, so we adopt an automated process explicitly modelled on human psychology. The provenance of the decision is modelled in OPM, allowing it to be queried as part of a larger provenance graph, and an OPM profile is provided to allow consistent querying of provenance across user decisions.
Resumo:
Users are facing an increasing challenge of managing information and being available anytime anywhere, as the web exponentially grows. As a consequence, assisting them in their routine tasks has become a relevant issue to be addressed. In this paper, we introduce a software framework that supports the development of Personal Assistance Software (PAS). It relies on the idea of exposing a high level user model in order to increase user trust in the task delegation process as well as empowering them to manage it. The framework provides a synchronization mechanism that is responsible for dynamically adapting an underlying BDI agent-based running implementation in order to keep this high-level view of user customizations consistent with it.