18 resultados para Symbolic Computations

em Department of Computer Science E-Repository - King's College London, Strand, London


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very large scale computations are now becoming routinely used as a methodology to undertake scientific research. In this context, `provenance systems' are regarded as the equivalent of the scientist's logbook for in silico experimentation: provenance captures the documentation of the process that led to some result. Using a protein compressibility analysis application, we derive a set of generic use cases for a provenance system. In order to support these, we address the following fundamental questions: what is provenance? how to record it? what is the performance impact for grid execution? what is the performance of reasoning? In doing so, we define a technologyindependent notion of provenance that captures interactions between components, internal component information and grouping of interactions, so as to allow us to analyse and reason about the execution of scientific processes. In order to support persistent provenance in heterogeneous applications, we introduce a separate provenance store, in which provenance documentation can be stored, archived and queried independently of the technology used to run the application. Through a series of practical tests, we evaluate the performance impact of such a provenance system. In summary, we demonstrate that provenance recording overhead of our prototype system remains under 10% of execution time, and we show that the recorded information successfully supports our use cases in a performant manner.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a calculus of stratified resolution, in which special attention is paid to clauses that "define" relations. If such clauses are discovered in the initial set of clauses, they are treated using the rule of definition unfolding, i.e. the rule that replaces defined relations by their definitions. Stratified resolution comes with a powerful notion of redundancy: a clause to which definition unfolding has been applied can be removed from the search space. To prove the completeness of stratified resolution with redundancies, we use a novel combination of Bachmair and Ganzingerâ??s model construction technique and a hierarchical construction of orderings and least fixpoints.