1 resultado para Stochastic processes -- Mathematical models
em Department of Computer Science E-Repository - King's College London, Strand, London
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (44)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Cochin University of Science & Technology (CUSAT), India (13)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (17)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (20)
- Helda - Digital Repository of University of Helsinki (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (30)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (5)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (17)
- Queensland University of Technology - ePrints Archive (181)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (11)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (163)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (21)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universita di Parma (1)
- Universitat de Girona, Spain (18)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (24)
- University of Queensland eSpace - Australia (21)
- University of Southampton, United Kingdom (19)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Many solutions to AI problems require the task to be represented in one of a multitude of rigorous mathematical formalisms. The construction of such mathematical models forms a difficult problem which is often left to the user of the problem solver. This void between problem solvers and the problems is studied by the eclectic field of automated modelling. Within this field, compositional modelling, a knowledge-based methodology for system modelling, has established itself as a leading approach. In general, a compositional modeller organises knowledge in a structure of composable fragments that relate to particular system components or processes. Its embedded inference mechanism chooses the appropriate fragments with respect to a given problem, instantiates and assembles them into a consistent system model. Many different types of compositional modeller exist, however, with significant differences in their knowledge representation and approach to inference. This paper examines compositional modelling. It presents a general framework for building and analysing compositional modellers. Based on this framework, a number of influential compositional modellers are examined and compared. The paper also identifies the strengths and weaknesses of compositional modelling and discusses some typical applications.