3 resultados para Scientific experiments

em Department of Computer Science E-Repository - King's College London, Strand, London


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As scientific workflows and the data they operate on, grow in size and complexity, the task of defining how those workflows should execute (which resources to use, where the resources must be in readiness for processing etc.) becomes proportionally more difficult. While "workflow compilers", such as Pegasus, reduce this burden, a further problem arises: since specifying details of execution is now automatic, a workflow's results are harder to interpret, as they are partly due to specifics of execution. By automating steps between the experiment design and its results, we lose the connection between them, hindering interpretation of results. To reconnect the scientific data with the original experiment, we argue that scientists should have access to the full provenance of their data, including not only parameters, inputs and intermediary data, but also the abstract experiment, refined into a concrete execution by the "workflow compiler". In this paper, we describe preliminary work on adapting Pegasus to capture the process of workflow refinement in the PASOA provenance system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current scientific applications are often structured as workflows and rely on workflow systems to compile abstract experiment designs into enactable workflows that utilise the best available resources. The automation of this step and of the workflow enactment, hides the details of how results have been produced. Knowing how compilation and enactment occurred allows results to be reconnected with the experiment design. We investigate how provenance helps scientists to connect their results with the actual execution that took place, their original experiment and its inputs and parameters.