1 resultado para Riemann Solvers

em Department of Computer Science E-Repository - King's College London, Strand, London


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many solutions to AI problems require the task to be represented in one of a multitude of rigorous mathematical formalisms. The construction of such mathematical models forms a difficult problem which is often left to the user of the problem solver. This void between problem solvers and the problems is studied by the eclectic field of automated modelling. Within this field, compositional modelling, a knowledge-based methodology for system modelling, has established itself as a leading approach. In general, a compositional modeller organises knowledge in a structure of composable fragments that relate to particular system components or processes. Its embedded inference mechanism chooses the appropriate fragments with respect to a given problem, instantiates and assembles them into a consistent system model. Many different types of compositional modeller exist, however, with significant differences in their knowledge representation and approach to inference. This paper examines compositional modelling. It presents a general framework for building and analysing compositional modellers. Based on this framework, a number of influential compositional modellers are examined and compared. The paper also identifies the strengths and weaknesses of compositional modelling and discusses some typical applications.