1 resultado para Random noise theory
em Department of Computer Science E-Repository - King's College London, Strand, London
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (42)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (126)
- Biodiversity Heritage Library, United States (15)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (22)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (146)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (2)
- Diposit Digital de la UB - Universidade de Barcelona (10)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (21)
- Martin Luther Universitat Halle Wittenberg, Germany (12)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (9)
- Nottingham eTheses (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (22)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (34)
- Scielo Saúde Pública - SP (50)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (17)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (12)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (71)
- Université de Montréal (1)
- Université de Montréal, Canada (9)
- University of Michigan (2)
- University of Queensland eSpace - Australia (223)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
The paper investigates which of Shannon’s measures (entropy, conditional entropy, mutual information) is the right one for the task of quantifying information flow in a programming language. We examine earlier relevant contributions from Denning, McLean and Gray and we propose and motivate a specific quantitative definition of information flow. We prove results relating equivalence relations, interference of program variables, independence of random variables and the flow of confidential information. Finally, we show how, in our setting, Shannon’s Perfect Secrecy theorem provides a sufficient condition to determine whether a program leaks confidential information.