2 resultados para REASONING OVER INCONSISTENCY
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
E-Science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed, it is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards, not necessarily anticipated prior to execution. Scientists may also want to review and verify experiments performed by their colleagues. There are no existing frameworks for validating such experiments in today's e-Science systems. Users therefore have to rely on error checking performed by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions. The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested in a bioinformatics application that performs protein compressibility analysis.
Resumo:
During the development of system requirements, software system specifications are often inconsistent. Inconsistencies may arise for different reasons, for example, when multiple conflicting viewpoints are embodied in the specification, or when the specification itself is at a transient stage of evolution. These inconsistencies cannot always be resolved immediately. As a result, we argue that a formal framework for the analysis of evolving specifications should be able to tolerate inconsistency by allowing reasoning in the presence of inconsistency without trivialisation, and circumvent inconsistency by enabling impact analyses of potential changes to be carried out. This paper shows how clustered belief revision can help in this process. Clustered belief revision allows for the grouping of requirements with similar functionality into clusters and the assignment of priorities between them. By analysing the result of a cluster, an engineer can either choose to rectify problems in the specification or to postpone the changes until more information becomes available.