1 resultado para Quantitative easing
em Department of Computer Science E-Repository - King's College London, Strand, London
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (27)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archive of European Integration (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (35)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (20)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (35)
- Boston University Digital Common (4)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (26)
- CentAUR: Central Archive University of Reading - UK (72)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (80)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (3)
- Digital Commons @ Winthrop University (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (11)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (14)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (21)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (28)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (129)
- Queensland University of Technology - ePrints Archive (106)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (133)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (6)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (19)
- University of Southampton, United Kingdom (4)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
This paper uses Shannon's information theory to give a quantitative definition of information flow in systems that transform inputs to outputs. For deterministic systems, the definition is shown to specialise to a simpler form when the information source and the known inputs jointly determine the inputs. For this special case, the definition is related to the classical security condition of non-interference and an equivalence is established between non-interference and independence of random variables. Quantitative information flow for deterministic systems is then presented in relational form. With this presentation, it is shown how relational parametricity can be used to derive upper and lower bounds on information flows through families of functions defined in the second order lambda calculus.