3 resultados para Protein Array Analysis

em Department of Computer Science E-Repository - King's College London, Strand, London


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Very large scale computations are now becoming routinely used as a methodology to undertake scientific research. In this context, `provenance systems' are regarded as the equivalent of the scientist's logbook for in silico experimentation: provenance captures the documentation of the process that led to some result. Using a protein compressibility analysis application, we derive a set of generic use cases for a provenance system. In order to support these, we address the following fundamental questions: what is provenance? how to record it? what is the performance impact for grid execution? what is the performance of reasoning? In doing so, we define a technologyindependent notion of provenance that captures interactions between components, internal component information and grouping of interactions, so as to allow us to analyse and reason about the execution of scientific processes. In order to support persistent provenance in heterogeneous applications, we introduce a separate provenance store, in which provenance documentation can be stored, archived and queried independently of the technology used to run the application. Through a series of practical tests, we evaluate the performance impact of such a provenance system. In summary, we demonstrate that provenance recording overhead of our prototype system remains under 10% of execution time, and we show that the recorded information successfully supports our use cases in a performant manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

E-Science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed, it is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards, not necessarily anticipated prior to execution. Scientists may also want to review and verify experiments performed by their colleagues. There are no existing frameworks for validating such experiments in today's e-Science systems. Users therefore have to rely on error checking performed by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions. The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested in a bioinformatics application that performs protein compressibility analysis.